| Bottom | Home | Article | Bookshelf | Keyword | Author | Oxymoron |

> LaTeX General
>Maxima

LaTeX Math Command

Cat: SCO
Pub: 2016
#1601a

Kanzo Kobayashi  $\frac{1}{x^{10}}$

up 16119
Index
I
Tag
; absolute; accent; aleph; approximate; array; arrow; bar; binomial; bracket; brace; card mark; cases; centering; character; color; chemical equation; combination; diamond; divide; dots; exist; for all; fraction; Greek; hat; hyperbolic sine; include; integer; less than; limes; list; matrix; math font; multiply; nearly equal; not equal; nothing; nul; overbrace; parenthesis; partial; permutation; perpendicular; product; propotional; right-left arrow; roman font; set; similarity; sine-cosine; space; special character; square root; subset; sum; text; text size; trigonometry; underline; verbatim;
Name
LaTeX command
LaTeX Sample

>Top <A1>:

  1. absolute-1
  2. parentheses
  3. parentheses-2
  4. parentheses-3
  5. parentheses-4
  6. parentheses-5
  7. parentheses-6
  8. accent
  9. vector

<A1>:

  1. \bigl| |x|+|y| \bigr|$
  2. \left( \right) \{ \} \left[ \right]$
  3. \bigl\{a_k\bigm| k \in \{1,2,3\} \bigr\}$
  4. \bigl\{ax+b \bigr\}\ \left(ax+b \right)\ \bigl(ax+b \bigr)\ \left[ax+b \right]\ \bigl[ax+b \bigr]$
  5. \left( \dfrac{A}{B} \right)$
  6. \left(x^2 \right.$
  7. \left( \dfrac{A}{B} \middle/ \dfrac{C}{D} \right)$
  8. \overrightarrow{a}\ \vec{a}\ \acute{a}\ \grave{a}\ \hat{a}\ \bar{a}\ \breve{a}\
    \check{a}\ \tilde{a}\ \dot{a}\
    \ddot{a}\ \dddot{a}\ \ddddot{a}
  9. \vec{a}=\vec{b}+\vec{c}\\
    \vec{ab}=\vec{AC}=\overrightarrow{AB}
    +\overrightarrow{ABC}

<A1>:

  1. $\bigl| |x|+|y| \bigr|$
  2. $\left( \right) \{ \} \left[ \right]$
  3. $\bigl\{a_k\bigm| k \in \{1,2,3\} \bigr\}$
  4. $\bigl\{ax+b \bigr\}\ \left(ax+b \right)\ \bigl(ax+b \bigr)\ \left[ax+b \right]\ \bigl[ax+b \bigr]$
  5. $\left( \dfrac{A}{B} \right)$
  6. $\left(x^2 \right.$
  7. $\left( \dfrac{A}{B} \middle/ \dfrac{C}{D} \right)$
  8. $\overrightarrow{a}\ \vec{a}\ \acute{a}\ \grave{a}\ \hat{a}\ \bar{a}\ \breve{a}\
    \check{a}\ \tilde{a}\ \dot{a}\
    \ddot{a}\ \dddot{a}\ \ddddot{a}$
  9. $\vec{a}=\vec{b}+\vec{c}\\
    \vec{ab}=\vec{AC}=\overrightarrow{AB}
    +\overrightarrow{ABC} $

>Top <A2>:

  1. acute
  2. aleph
  3. amalgamation
  4. angle
  5. approximately
  6. arc cosine
  7. asymptotically equal to

<A3>:

  1. \acute{expression}$
  2. \aleph$
  3. \amalg$
  4. \angle$
  5. \approx$
  6. \arccos \ \arcsin \ \arctan$
  7. \asymp$

<A4>:

  1. $\acute{expression}$
  2. $\aleph$
  3. $\amalg$
  4. $\angle$
  5. $\approx$
  6. $\arccos \ \arcsin \ \arctan$
  7. $\asymp$

>Top <A3>:

  1. accent
  2. acute
  3. aleph
  4. align-1
  5. align-2
  6. aling-3
  7. amalgamation
  8. amalg
  9. angle
  10. angle/surd
  11. approx equal-1
  12. approx equal-2
  13. approx equal-3
  14. approx equal-4
  15. arc cosine

<A3>:

  1. \hat{a}\ \dot{a}\ \ddot{a}\ \bar{a}\ \acute{a}\ \check{a}\ \grave{a}\ \vec{a}\ \breve{a}\ \tilde{a}$
  2. \acute{expression}$
  3. \aleph\ \beth\ \daleth\ \S\ \cdot\ \bullet\ \circ\ \diamond\ \ast\ \star\ \wr\ \prime$
  4. begin{align*}
    2x-5y &=8\\
    3x+9y &=-12
    end{align*}$
  5. begin{alignat}{2}
    (a+b)^2 &=a^2+2ab+b^2 &\qquad & \text{展開}\\
    &= a(a+2b)+b^2 ˆˆ& & \text{$a$で括る}
    end{alignat}$
  6. begin{multline}
    a+b+c+d+e+f+g+h+i+j+k \\
    +l+m+n+o+p+q+r+s+y+u+v \\
    +w+x+y+z+\alpha+\beta+\gamma+\delta
    end{multline}$
  7. \alpha$
  8. \amalg$
  9. \angle\ \measuredangle\ \sphericalangle\ \surd$
  10. \angle \mathrm{B}=30^{\circ}$
  11. \approx\ \approxeq\ \cong\ \backsim\ \backsimeq\ \asymp\ \eqsim$
  12. \fallingdotseq\ \doteq\ \doteqdot\ \circeq$
  13. \bumpeq\ \Bumpeq\ \eqcirc\ \gtreqless\ \gtreqqless$
  14. \lneq\ \lnapprox\ \lessapprox\ \lesseqgtr\ \lesseqqgtr\ \lesssim\ \lvertneqq$
  15. \arccos \ \arcsin \ \arctan$

<A3>:

  1. $\hat{a}\ \dot{a}\ \ddot{a}\ \bar{a}\ \acute{a}\ \check{a}\ \grave{a}\ \vec{a}\ \breve{a}\ \tilde{a}$
  2. $\acute{expression}$
  3. $\aleph\ \beth\ \daleth\ \S\ \cdot\ \bullet\ \circ\ \diamond\ \ast\ \star\ \wr\ \prime$
  4. $\begin{align*}
    2x-5y &=8\\
    3x+9y &=-12
    \end{align*}$
  5. $\begin{alignat}{2}
    (a+b)^2 &=a^2+2ab+b^2 &\qquad & \text{展開}\\
    &= a(a+2b)+b^2 ˆˆ& & \text{$a$で括る}
    \end{alignat}$
  6. $\begin{multline}
    a+b+c+d+e+f+g+h+i+j+k \\
    +l+m+n+o+p+q+r+s+y+u+v \\
    +w+x+y+z+\alpha+\beta+\gamma+\delta
    \end{multline}$
  7. $\alpha$
  8. $\amalg$
  9. $\angle\ \measuredangle\ \sphericalangle\ \surd$
  10. $\angle \mathrm{B}=30^{\circ}$
  11. $\approx\ \approxeq\ \cong\ \backsim\ \backsimeq\ \asymp\ \eqsim$
  12. $\fallingdotseq\ \doteq\ \doteqdot\ \circeq$
  13. $\bumpeq\ \Bumpeq\ \eqcirc\ \gtreqless\ \gtreqqless$
  14. $\lneq\ \lnapprox\ \lessapprox\ \lesseqgtr\ \lesseqqgtr\ \lesssim\ \lvertneqq$
  15. $\arccos\ \arcsin\ \arctan$

>Top <A4>:

  1. arrow (right)
    やじるし
  2. arrow (left)
  3. arrow+character
  4. arrow (dash)
  5. arrow (leftright)
  6. arrow (mapsto)
  7. arrow (harpoon)
  8. arrow (tail)
  9. arrow (twohead)
  10. arrow (not)
  11. arrow (double not)
  12. arrow (up/down harpoon)
  13. arrow (up/down)
  14. arrow (oblique)
  15. arrow (curved)
  16. arrow (loop)
  17. arrow (extendable)
  18. arrow (extendable){upper}
  19. vertical line
  20. asymptotically equal
  21. asymptotically equal to
  22. marks

<A4>:

  1. \rightarrow\ \Rightarrow\ \Rrightarrow\ \longrightarrow\ \Longrightarrow$
  2. \leftarrow\ \Leftarrow\ \Lleftarrow\ \longleftarrow\ \Longleftarrow$
  3. \xrightarrow[lower]{upper character}$
  4. \dashrightarrow\ \dashleftarrow$
  5. \leftrightarrow\ \Leftrightarrow\ \longleftrightarrow\ \Longleftrightarrow$
  6. \mapsto\ \longmapsto\ \hookrightarrow\ \hookleftarrow\ \leadsto\ \leftrightsquigarrow$
  7. \rightharpoonup\ \rightharpoondown\ \leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \leftrightharpoons$
  8. \rightarrowtail\ \leftarrowtail$
  9. \twoheadrightarrow\ \twoheadleftarrow$
  10. \nrightarrow\ \nleftarrow$
  11. \nleftrightarrow\ \nLeftrightarrow$
  12. \downharpoonright\ \downharpoonleft\ \upharpoonright\ \upharpoonleft$
  13. \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow$
  14. \nearrow\ \searrow\ \swarrow\ \nwarrow$
  15. \curvearrowright\ \curvearrowleft\ \circlearrowright\ \circlearrowleft$
  16. \looparrowright\ \looparrowleft\ \leadsto$
  17. [ \text{Java source}\xrightarrow{\text{javac compiler}}\text{class file} $]
  18. \xrightarrow{\text{k_1,K_r}}$
  19. \|\ \backslash$
  20. \simeq$
  21. \asymp$
  22. \multimap\ \neg$

<A4>:

  1. $\rightarrow\ \Rightarrow\ \Rrightarrow\ \longrightarrow\ \Longrightarrow$
  2. $\leftarrow\ \Leftarrow\ \Lleftarrow\ \longleftarrow\ \Longleftarrow$
  3. $\xrightarrow[lower]{upper character}$
  4. $\dashrightarrow\ \dashleftarrow$
  5. $\leftrightarrow\ \Leftrightarrow\ \longleftrightarrow\ \Longleftrightarrow$
  6. $\mapsto\ \longmapsto\ \hookrightarrow\ \hookleftarrow\ \leadsto\ \leftrightsquigarrow$
  7. $\rightharpoonup\ \rightharpoondown\ \leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \leftrightharpoons$
  8. $\rightarrowtail\ \leftarrowtail$
  9. $\twoheadrightarrow\ \twoheadleftarrow$
  10. $\nrightarrow\ \nleftarrow\ \nRightarrow\ \nLeftarrow\ \nleftrightarrow\ \nLeftrightarrow$
  11. $\nleftrightarrow\ \nLeftrightarrow$
  12. $\downharpoonright\ \downharpoonleft\ \upharpoonright\ \upharpoonleft$
  13. $\uparrow\ \Uparrow\ \upuparrows\ \downarrow\ \Downarrow\ \downdownarrows\ \updownarrow\ \Updownarrow$
  14. $\nearrow\ \searrow\ \swarrow\ \nwarrow$
  15. $\curvearrowright\ \curvearrowleft\ \circlearrowright\ \circlearrowleft$
  16. $\looparrowright\ \looparrowleft\ \leadsto$
  17. $[ \text{Java source}\xrightarrow{\text{javac compiler}}\text{class file} $]
  18. $\xrightarrow{\text{k_1,K_r}}$
  19. $\|\ \backslash$
  20. $\simeq$
  21. $\asymp$
  22. $\multimap\ \neg$

>Top <A5>:

  1. equation
  2. ひょう
  3. array caption
  4. array
  5. array line
  6. array line2

<A5>:

  1. begin{align*}
    x&=y & w&=z & a &=b+c\\
    2x&=-y & 3w&=\dfrac{1}{2}z & a & =b\\
    -4+5x&=2+y & w+2&=-1+w & ab & =cb
    \end{align*}
  2. begin{array}{c|l}a&1\\ \hline b&2\end{array}
  3. \frac{\ begin{array}{c}Caption\\ \end{array}}{\ begin{array}{c|l}a&1\\ \hline b&2\end{array}}
  4. begin{array}{lc|r}
    a+b & c & d+e\\
    A & B & C\\ \hline
    1 & 2 & 3
    \end{array}
  5. begin{array}{|c|c|c|c|c|} \hline
    0 & 1 & 2 & 3 & 4 \\ \hline
    5 & 6 & 7 & 8 & 9 \\ \hline
    \end{array}
  6. begin{array}{|l|c|r||r|} \hline メニュー & サイズ & 値段 & カロリー \\ \hline \hline 牛丼 & 並盛 & 500円 & 600 kcal \\ 牛丼 & 大盛 & 1,000円 & 800 kcal \\ 牛丼 & 特盛 & 1,500円 & 1,000 kcal \\ \hline 牛皿 & 並盛 & 300円 & 250 kcal \\ 牛皿 & 大盛 & 700円 & 300 kcal \\ 牛皿 & 特盛 & 1,000円 & 350 kcal \\ \hline \end{array}

<A5>:

  1. $\begin{align*}
    x&=y & w&=z & a &=b+c\\
    2x&=-y & 3w&=\dfrac{1}{2}z & a&=b\\
    -4+5x&=2+y & w+2&=-1+w & ab&=cb
    \end{align*}$
  2. $\begin{array}{c|l}a&1\\ \hline b&2\end{array}$
  3. $\frac{\begin{array}{c}Caption\\ \end{array}}
    {\begin{array}{c|l}a&1\\ \hline b&2\end{array}}$
  4. $\begin{array}{lc|r}
    a+b & c & d+e\\
    A & B & C\\ \hline
    1 & 2 & 3
    \end{array}$
  5. $\begin{array}{|c|c|c|c|c|} \hline
    0 & 1 & 2 & 3 & 4 \\ \hline
    5 & 6 & 7 & 8 & 9 \\ \hline
    \end{array}$
  6. $\begin{array}{|l|c|r||r|} \hline メニュー & サイズ & 値段 & カロリー \\ \hline \hline 牛丼 & 並盛 & 500円 & 600 kcal \\ 牛丼 & 大盛 & 1,000円 & 800 kcal \\ 牛丼 & 特盛 & 1,500円 & 1,000 kcal \\ \hline 牛皿 & 並盛 & 300円 & 250 kcal \\ 牛皿 & 大盛 & 700円 & 300 kcal \\ 牛皿 & 特盛 & 1,000円 & 350 kcal \\ \hline \end{array}$
  1. begin{array}{ccc}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  2. begin{array}{rrr}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  3. begin{array}{lll}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  4. begin{equation} f(x)= begin{cases}
    -x^2 & \mbox{$x<0$ のとき}\\
    x & \mbox{$0\leq x <1$ のとき}\\
    x^3 & \mbox{$x\geq 1$ のとき}
    \end{cases} \end{equation}
  1. \begin{array}{ccc}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  2. \begin{array}{rrr}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  3. \begin{array}{lll}
    1 & 3 & 5\\
    13 & 35 & 51\\
    135 & 351 & 513\\
    3 & 5 & 7
    \end{array}
  4. \begin{equation} f(x)= \begin{cases}
    -x^2 & \mbox{$x<0$ のとき}\\
    x & \mbox{$0\leq x <1$ のとき}\\
    x^3 & \mbox{$x\geq 1$ のとき}
    \end{cases} \end{equation}

>Top <B1>:

  1. backepsilon
  2. backprime
  3. backsim
  4. backslash
  5. bar
  6. double bar
  7. barwedge
  8. Bbbk
  9. because/therefore
  10. beta
  11. beth
  12. between
  13. big cap/big cup/big U plus
  14. big circle/ big circled dot
  15. big square cap/cup
  16. big triangel down/up
  17. big vee/wedge

<B1>:

  1. \backepsilon$
  2. \backprime$
  3. \backsim$
  4. \backslash$
  5. \bar{x}\ \overline{x}\ \overline{xyz}\ \bar{xyz}$
  6. \bar{\bar\tau}\quad\ \bar{\bar a}\ \overline{\overline x}\quad$
  7. \barwedge$
  8. \Bbbk$
  9. \because\ \therefore$
  10. \beta$
  11. \beth\ \gimel\ \daleth$
  12. \between$
  13. \bigcap\ \bigcup\ \biguplus$$
  14. \bigcirc\ \bigodot \ \bigoplus \ \bigotimes$
  15. \bigsqcap\ \bigsqcup$
  16. \bigtriangledown \ \bigtriangleup$
  17. \bigvee \ \bigwedge$

<B1>:

  1. $\backepsilon$
  2. $\backprime$
  3. $\backsim$
  4. $\backslash$
  5. $\bar{x}\ \overline{x}\ \overline{xyz}\ \bar{xyz}$
  6. $\bar{\bar\tau}\quad\ \bar{\bar a}\ \overline{\overline x}\quad$
  7. $\barwedge$
  8. $\Bbbk$
  9. $\because\ \therefore$
  10. $\beta$
  11. $\beth\ \gimel\ \daleth$
  12. $\between$
  13. $\bigcap\ \bigcup\ \biguplus$
  14. $\bigcirc\ \bigodot\ \bigoplus\ \bigotimes$
  15. $\sqcap\ \bigsqcup$
  16. $\bigtriangledown\ \bigtriangleup$
  17. $\bigvee\ \bigwedge$

>Top <B2>:

  1. binomial coefficient
  2. binomial coefficient (text style)
  3. binomial coefficient (display style)
  4. blackboard math font
  5. black lozenge/square
  6. black triangle (down)
  7. black triangel left/right
  8. bottom/bowtie
  9. box/boxdot/boxtimes
  10. boxminus/boxplus/ boxtimes
  11. fixed box
  12. overline
  13. braced fraction
  14. bracevert
  15. bracketed fraction
  16. breve
  17. build relation
  18. bullet
  19. Bumpeq/bumpeq

<B2>:

  1. \binom{upper}{lower}$
  2. \tbinom{upper}{lower}$
  3. \dbinom{upper}{lower}$
  4. \mathbb{math}$
  5. \blacklozenge \ \blacksquare$
  6. \blacktriangle \ \blacktriangledown$
  7. \blacktriangleleft \ \blacktriangleright$
  8. \bot \ \bowtie$
  9. Box\ \boxdot\ \boxed{text}\ \fbox{test}
  10. \boxminus \ \boxplus \ \boxtimes$
  11. This\ \fbox{ABC}\ is\, correct\;space\ more\ \space.
  12. \overline{overline}
  13. \brace$
  14. \bracevert$
  15. \brack$
  16. \breve{expression}$
  17. \buildrel{upper}\over{lower}$
  18. \bullet$
  19. \Bumpeq\ \bumpeq$

<B2>:

  1. $\binom{upper}{lower}$
  2. $\tbinom{upper}{lower}$
  3. $\dbinom{upper}{lower}$
  4. $\mathbb{math}$
  5. $\blacklozenge\ \blacksquare$
  6. $\blacktriangle\ \blacktriangledown$
  7. $\blacktriangleleft\ \blacktriangleright$
  8. $\bot\ \bowtie$
  9. $\Box\ \boxdot\ \boxed{text}\ \fbox{test}$
  10. $\boxminus\ \boxplus\ \boxtimes$
  11. $This\ \fbox{ABC}\ is\, correct\;space\ more\ \space.$
  12. $\overline{overline}\\ \underline{underline}\\ \underline{\underline{doubleunderline}}$
  13. $\brace$
  14. $\bracevert$
  15. $\brack$
  16. $\breve{expression}$
  17. $\buildrel{upper}\over{lower}$
  18. $\bullet$
  19. $\Bumpeq\ \bumpeq$

>Top <C1>:

  1. caligraphic font
  2. cap/cup/Cap/Cup
  3. Cap (square)/ Cup (square)
  4. けーす
  5. cases-1
  6. cases-2
  7. cases-3
  8. cases-4
  9. ceiling / floor function
  10. center dot
  11. cdotp
  12. centerdot
  13. check
  14. checkmark
  15. chemical element
  16. chemical equation
  17. chemical equation2
  18. chi
  19. choose k
  20. circle
  21. circeq
  22. circlearrow left/right
  23. circledast
  24. big circled dot
  25. circled plus/circled slash/circled times

<C1>:

  1. \cal{text}$
  2. \cap\ \cup\ \Cap\ \Cup$
  3. \sqcap\ \sqcup\ \prod\ \coprod\ \biguplus$
  4. \cases{a&b\\c&d}
  5. \cases{e1, & c1 \cr e2, & c2}$
  6. begin{cases}
    a=b\cos{C}+c\cos{B} \\
    b=c\cos{A}+a\cos{C} \\
    c=a\cos{B}+b\cos{A}
    \end{cases}$
  7. begin{equation}
    \lvert x\rvert=\begin{cases}
    x&\text{when, $x \ge 0$}\\
    -x&\text{otherwise}
    \end{cases
    \end{equation}
  8. |x|=\begin{cases}
    x & \text (when, x \ge 0)\\
    -x & \text (otherwise)
    \end{cases
  9. \lceil x \rceil\ \lfloor x \rfloor$
  10. \cdot$
  11. \cdotp$
  12. \cdots$
  13. \check{expression}$
  14. \checkmark$
  15. _{\;6}^{12}\mathrm{C}\; {}^2_1\mathrm{H}\ \;0^\circ\mathrm{C}$
  16. NaNO$_3
  17. HF(aq) +H_{2}O(l) \rightleftharpoons H_{3}O^{+} (aq) +F_{-}(aq)$
  18. \chi$
  19. \choose k$
  20. \circ$
  21. \circeq$
  22. \circlearrowleft \ \circlearrowright$
  23. \circledast\ \circledcirc\ \circleddash\ \\circledR\ \circledS$
  24. \bigcircle\ \bigodot\ \bigoplus\ \bigotimes$
  25. \odot\ \oplus\ \ominus\ \oslash\ \otimes$

<C1>:

  1. $\cal{text}$
  2. $\cap\ \cup\ \Cap\ \Cup\ \displaystyle\bigcup_{k=1}^n{A_k}\
    \displaystyle\bigcap_{k=1}^n{A_k}\ $
  3. $\sqcap\ \sqcup\ \prod\ \coprod\ \biguplus$
  4. $\cases{a&b\\c&d}$
  5. $\cases{e1, & c1 \cr e2, & c2}$
  6. $\begin{cases}
    a=b\cos{C}+c\cos{B} \\
    b=c\cos{A}+a\cos{C} \\
    c=a\cos{B}+b\cos{A}
    \end{cases}$
  7. $\begin{equation}
    \lvert x\rvert=\begin{cases}
    x&\text{when, $x \ge 0$}\\
    -x&\text{otherwise}
    \end{cases}
    \end{equation}$
  8. $|x|=\begin{cases}
    x & \text (when, x \ge 0)\\
    -x & \text (otherwise)
    \end{cases}$
  9. $\lceil x \rceil\ \lfloor x \rfloor$
  10. $\cdot$
  11. $\cdotp$
  12. $\cdots$
  13. $\check{expression}$
  14. $\checkmark$
  15. $_{\;6}^{12}\mathrm{C}\; {}^2_1\mathrm{H}\ \;0^\circ\mathrm{C}$
  16. NaNO$_3$
  17. $HF(aq) +H_{2}O(l) \rightleftharpoons H_{3}O^{+} (aq) +F_{-}(aq) $
  18. $\chi$
  19. $\choose k$
  20. $\circ$
  21. $\circeq$
  22. $\circlearrowleft\ \circlearrowright$
  23. $\circledast\ \circledcirc\ \circleddash\ \circledR\ \circledS$
  24. $\bigcirc\ \bigodot\ \bigoplus\ \bigotimes$
  25. $\odot\ \oplus\ \ominus\ \oslash\ \otimes$

>Top <C2>

  1. centering1
  2. centering2
  3. centering3
  4. centering4
  5. color
  1. begin{equation}
    y=ax^2+bx+c
    \end{equation}
  2. begin{eqnarray}
    E=mc^2
    \end{eqnarray}
  3. [ E=mc^2 \]
  4. 数式を改行する場合は、
    [y=ax^2+bx+c \]
    のように書く
  5. $\displaystyle\sum_
    {\color{0A7C10}n=0}^
    {\color{red}\infty}a_n x^n

 

  1. \begin{equation}
    y=ax^2+bx+c
    \end{equation}
  2. \begin{eqnarray}
    E=mc^2
    \end{eqnarray}
  3. \[ E=mc^2 \]
  4. 数式を改行する場合は、
    \[y=ax^2+bx+c \]
    のように書く
  5. $\displaystyle\sum
    _{\color{0A7C10}n=0}^
    {\color{red}\infty}a_n x^n$

>Top <C3>:

  1. closed integral/closed integral (snippet)
  2. club suit
  3. colon-1
  4. colon-2
  5. color
  6. complement
  7. combination-1
  8. combination-2/ permutation/ repeated permutation
  9. complement
  10. contains as member
  11. coproduct
  12. coproduct (snippet)
  13. cosecant
  14. cosine/cotangent/
  15. operator name
  16. cup/cap
  17. curlyeqrec/ curlyeqsucc
  18. curvearrowleft/ arrowright
  19. chapter-1
  20. chapter-2
  21. chapter-3
  22. chapter-4
  23. chapter-5
  24. chapter-6

<C2>:

  1. \oint\ \oint_{region}$
  2. \clubsuit\ \diamondsuit\ \heartsuit\ \spadesuit$
  3. \colon$
  4. f : A\to B\; f{:}\ \ A\to B\ \;f\colon A \to B$
  5. $\color{red}{text},
    \color{blue}{text},\\
    \color{green}{text},
    \color{yellow}{text},\\
    \color{magenda}{text},
    \color{white}{text},\\
    \color{black}{text}
  6. \complement$
  7. {}_nC_k\ \= _nC_k$
  8. \ begin{eqnarray}
    {}_nC_k
    \ end{eqnarray}
    \ begin{eqnarray}
    {}_nP_k
    \ end{eqnarray}
    begin{eqnarray}
    {}_n\Pi_k
    \ end{eqnarray}$
  9. \complement$
  10. \ni$
  11. \coprod$
  12. \coprod_{lower}^{upper}expression$
  13. \csc$
  14. \cos\ \cot$
  15. operatorname{operator}$
  16. \cup\ \cap\ \sqcup\ \sqcap\ \bigcup\ \bigcap\ \biguplus$
  17. \curlyeqprec\ \curlyeqsucc$
  18. \curvearrowleft\ \curvearrowright$
  19. \S\ \div\ \ast\ \star\ \circ\ \bigcirc
  20. \bullet\ \diamond\ \Diamond\ \Box\ \dagger\ \ddagger
  21. \triangleright\ \triangleleft\ \bigtriangleup\ \bigtriangledown\ \lhd\ \rhd
  22. \oplus\ \ominus\ \otimes\ \oslash\ \odot\ \bigodot\ \bigotimes\ \bigoplus
  23. \ll\ \gg\ \in\ \ni\ \mid\ \equiv\ \angle\ \triangle
  24. \lceil\ \rceil\ \lfloor\ \rfloor\ \top\ \bot\ \bigvee\ \bigwedge\ \smile

<C2>:

  1. $\oint\ \oint_{region}$
  2. $\clubsuit\ \diamondsuit\ \heartsuit\ \spadesuit$
  3. $\colon$
  4. $f : A\to B\; f{:}\ \ A\to B\ \;f\colon A \to B$
  5. $\color{red}{text},
    \color{blue}{text},\\
    \color{green}{text},
    \color{yellow}{text},\\
    \color{magenda}{text},
    \color{white}{text},\\
    \color{black}{text}$
  6. $\complement$
  7. ${}_nC_k\ \ =_nC_k$
  8. $\begin{eqnarray}
    {}_nC_k
    \end{eqnarray}$
    $\begin{eqnarray}
    {}_nP_k
    \end{eqnarray}$
    $\begin{eqnarray}
    {}_n\Pi_k
    \end{eqnarray}$
  9. $\complement$
  10. $\ni$
  11. $\coprod$
  12. $\coprod_{lower}^{upper}expression$
  13. $\csc$
  14. $\cos\ \cot$
  15. $operatorname{operator}$
  16. $\cup\ \cap\ \sqcup\ \sqcap\ \bigcup\ \bigcap\ \biguplus$
  17. $\curlyeqprec\ \curlyeqsucc$
  18. $\curvearrowleft\ \curvearrowright$
  19. $\S\ \div\ \ast\ \star\ \circ\ \bigcirc$
  20. $\bullet\ \diamond\ \Diamond\ \Box\ \dagger\ \ddagger$
  21. $\triangleright\ \triangleleft\ \bigtriangleup\ \bigtriangledown\ \lhd\ \rhd$
  22. $\oplus\ \ominus\ \otimes\ \oslash\ \odot\ \bigodot\ \bigotimes\ \bigoplus$
  23. $\ll\ \gg\ \in\ \ni\ \mid\ \equiv\ \angle\ \triangle$
  24. $\lceil\ \rceil\ \lfloor\ \rfloor\ \top\ \bot\ \bigvee\ \bigwedge\ \smile$

>Top <D1>:

  1. dagger/double dagger
  2. daleth
  3. dashleftarrow/rightarrow
  4. degree
  5. delta/Delta
  6. determinant
  7. diagdown/up
  8. diamond/Diamond/ diamond suit
  9. digamma
  10. dimension
  11. direct limit
  12. divide/divideontimes/multiply
  13. divide/not divide
  14. not greater than

<D1>:

  1. \dagger\ \ddagger$
  2. \daleth$
  3. \dashleftarrow\ \dashrightarrow$
  4. \deg$
  5. \delta\ \Delta\ \varDelta$
  6. \det$
  7. \diagdown\ \diagup$
  8. \diamond\ \Diamond\ \diamondsuit$
  9. \digamma\ \Box$
  10. \dim$
  11. \varinjlim$
  12. \div\ \divideontimes \times$
  13. \mid\ \nmid$
  14. \ngeq\ \ngeqq\ \nleq\ \nleqq$

<D1>:

  1. $\dagger\ \ddagger$
  2. $\daleth$
  3. $\dashleftarrow\ \dashrightarrow$
  4. $\deg$
  5. $\delta\ \Delta\ \varDelta$
  6. $\det$
  7. $\diagdown\ \diagup$
  8. $\diamond\ \Diamond\ \diamondsuit\ \lozenge\ \blacklozenge$
  9. $\digamma\ \Box$
  10. $\dim$
  11. $\varinjlim$
  12. $\div\ \divideontimes \times$
  13. $\mid\ \nmid$
  14. $\ngeq\ \ngeqq\ \nleq\ \nleqq\ \nless\ \ngtr$

>Top <D2>:

  1. dot/double dot
  2. equals with dot/ doteq/ doteqdot
  3. rising dots/falling dots
  4. dots/dots between binary opertors/ dots between commas/ dots between integrals/ multiplication dots/ other dots
  5. ldots/cdots/vdots/ ddots/cdot
  6. dots-1
  7. dots-2
  8. dotplus
  9. doublebarwedge
  10. double integral
  11. down arrow (double)/ down arrow/downdownarrows/ up arrow (double)/ uparrow/ upuparrows
  12. downharpoonleft/right/ upharpoonleft/right

<D2>:

  1. \dot{x}\ \ddot{y}\ \dot{expression}\ \ddot{expression}
  2. \doteq\ \doteq\ \doteqdot$
  3. \fallingdotseq\ \reisingdotseq$
  4. \dots\ \dotsc\ \dotsi\ \dotsm\ \dotso$
  5. \ldots\ \cdots\ \vdots\ \ddots\ \cdot$
  6. \dotplus$
  7. a_1,a_2,\dots,a_n$
  8. a_1+a_2+\dots+a_n$
  9. \doublebarwedge$
  10. \iint$
  11. \Downarrow\ \downarrow\ \downdownarrows\ \Uparrow\ \uparrow\ \upuparrows$
  12. \downharpoonleft\ \downharpoonright\ \upharpoonleft\ \upharpoonright$

<D2>:

  1. $\dot{x}\ \ddot{y}\ \dot{expression}\ \ddot{expression}$
  2. $\doteq\ \doteq\ \doteqdot\ \divideontimes$
  3. $\fallingdotseq\ \risingdotseq$
  4. $\dots\ \dotsc\ \dotsi\ \dotsm\ \dotso$
  5. $\ldots\ \cdots\ \vdots\ \ddots\ \cdot$
  6. $\dotplus$
  7. $a_1,a_2,\dots,a_n$
  8. $a_1+a_2+\dots+a_n$
  9. $\doublebarwedge$
  10. $\iint$
  11. $\Downarrow\ \downarrow\ \downdownarrows\ \Uparrow\ \uparrow\ \upuparrows$
  12. $\downharpoonleft\ \downharpoonright\ \upharpoonleft\ \upharpoonright$
  1. display
  1. begin{equation}
    \sum_{k=1}^nk=\frac{1}{2}n(n+1)
    \end{equation}
  2. begin{equation}
    \int_0^\infty e^{-ax^2}dx=\frac{1}{2}\sqrt{\frac{\pi}{a}}
    \end{equation}
  1. \begin{equation}
    \sum_{k=1}^nk=\frac{1}{2}n(n+1)
    \end{equation}
  2. \begin{equation}
    \int_0^\infty e^{-ax^2}dx=\frac{1}{2}\sqrt{\frac{\pi}{a}}
    \end{equation}

>Top <E>:

  1. empty set/infinity
  2. epsilon/varepsilon/ backepsilon
  3. eqcirc
  4. eqslantgtr/eqslantless
  5. equation
  6. equivalent-1
  7. equivalent-2
  8. equivalent-3
  9. not equivalent (sample)
  10. eta
  11. eth
  12. exponential
  13. exists/for all
  14. extended right arrow/ extended left arrow

<E>:

  1. \emptyset\ \infty\ \propto\ \parallel\ \perp\ \times$
  2. \epsilon\ \varepsilon\ \backepsilon$
  3. \eqcirc\ \eqsim$
  4. \eqslantgtr\ \eqslantless$
  5. \cases{a&b\\c&d}
  6. \begin{equation}
    f(x)=\left\{
    \begin{array}{l}
    1\; (x=1)\\
    0\; (x\ne 1)
    \end{array}
    \right.
    \end {equation}
  7. \equiv\ \simeq\ \eqsim\ \sim\ \approx\ \neq\ \doteq\ \cong$
  8. \fallingdotseq\ \lessgtr\ \gtrless\ \lesseqgtr\ \lesseqqgtr$
  9. \gtreqless\ \gtreqqless$
  10. A \not \equiv B$
  11. \eta$
  12. \eth$
  13. \exp$
  14. \exists\ ^\exists X\ \nexists\ \forall\ \Finv\ \Game\ \complement$
  15. ^{\forall}\epsilon\
    ^{\exists}\delta\ ^{12}\mathrm{C}\
    ^{35}_{16}SO^{2-}_{4}
  16. \xrightarrow[lower]{upper}\ \xleftarrow[lower]{upper}$

<E>:

  1. $\emptyset\ \infty\ \propto\ \parallel\ \perp\ \times$
  2. $\epsilon\ \varepsilon\ \backepsilon$
  3. $\eqcirc\ \asymp$
  4. $\eqslantgtr\ \eqslantless$
  5. $\cases{a&b\\c&d}$
  6. $\begin{equation}
    f(x)=\left\{
    \begin{array}{l}
    1\; (x=1)\\
    0\; (x\ne 1)
    \end{array}
    \right.
    \end {equation}$
  7. $\equiv\ \simeq\ \eqsim\ \sim\ \approx\ \neq\ \doteq\ \cong$
  8. $\fallingdotseq\ \lessgtr\ \gtrless\ \lesseqgtr\ \lesseqqgtr$
  9. $\gtreqless\ \gtreqqless$
  10. $A \not \equiv B$
  11. $\eta$
  12. $\eth$
  13. $\exp$
  14. $\exists\ ^\exists X\ \nexists\ \forall\ \Finv\ \Game\ \complement$
  15. $^{\forall}\epsilon\
    ^{\exists}\delta\ ^{12}\mathrm{C}\
    ^{35}_{16}SO^{2-}_{4}$
  16. $\xrightarrow[lower]{upper}\ \xleftarrow[lower]{upper}$

>Top <F>:

  1. fallingdotseq
  2. finv
  3. flat/sharp/natural
  4. for all/exists/ell
  5. fork
  6. わり/はん
  7. fraction
  8. fraction (continued)
  9. fraction (display style)
  10. fraction (text style)
  11. fraction (sample)
  12. fraction displaystyle
  13. fraction (continued-2)
  14. fraction (continued-3)
  15. Fraktur I
  16. Fraktur math font
  17. Fractur R
  18. frown

<F>:

  1. \fallingdotseq$
  2. \Finv$
  3. \flat\ \sharp$
  4. \forall\ {}^\forall \exists\ {}^\exists\ \ell$
  5. \ptichfork$
  6. \frac{*}{*}\ \frac{1}{2}$
  7. \frac{upper}{lower}$
  8. \cfrac{upper}{lower}$
  9. \dfrac{upper}{lower}$
  10. \tfrac{upper}{lower}$
  11. \dfrac{d}{dx} \left(\dfrac{\log x}{x} \right)$
  12. y=\dfrac{1+x}{1-x}$
    \displaystyle y=\dfrac{1+x}{1-x}
  13. $\begin{equation}
    b_0+ \cfrac{c_1}{b_1+
    \cfrac{c_2}{b_2+
    \cfrac{c_3}{b_3+
    \cfrac{c_4}{b_4+\cdots}}}}
    \end{equation}
  14. \Im$
  15. \Re$
  16. \mathfrak{math}$
  17. \frown\ \smile\ \asymp\ \sim\ \approx$

<F>:

  1. $\fallingdotseq$
  2. $\Finv$
  3. $\flat\ \sharp\ \natural$
  4. $\forall\ {}^\forall \exists\ {}^\exists\ \ell$
  5. $\pitchfork$
  6. $\frac{*}{*}\ \frac{1}{2}$
  7. $\frac{upper}{lower}$
  8. $\cfrac{upper}{lower}$
  9. $\dfrac{upper}{lower}$
  10. $\tfrac{upper}{lower}$
  11. $\dfrac{d}{dx} \left(\dfrac{\log x}{x} \right)$
  12. $y=\dfrac{1+x}{1-x}$
    $\displaystyle y=\dfrac{1+x}{1-x}$
  13. $\begin{equation}
    b_0+ \cfrac{c_1}{b_1+
    \cfrac{c_2}{b_2+
    \cfrac{c_3}{b_3+
    \cfrac{c_4}{b_4+\cdots}}}}
    \end{equation} $
  14. $\begin{equation}
    b_0+\frac{c_1}{b_1+{}}\,
    \frac{c_2}{b_2+{}}\,
    \frac{c_3}{b_3+{}}\,
    \frac{c_4}{b_4+{}}\, \dotsb
    \end{equation} $
  15. $\Im$
  16. $\Re$
  17. $\mathfrak{math}$
  18. $\frown\ \smile\ \asymp\ \sim\ \approx$

>Top <G>:

  1. game
  2. gamma/Gamma
  3. GCD (great common divisor)
  4. gets
  5. gnapprox/gneq/ gneqq/ gnism
  6. grave
  7. greater than or equal to/less than or equal to
  8. greater than or equal to (other)/geqq/greater than or equal to (slanted)
  9. much greater than/ ggg/ gggtr
  10. gt
  11. lessdot
  12. Greek
  13. Greek (Capital)
  14. other character

<G>:

  1. \Game$
  2. \gamma\ \Gamma\ \varGamma\ \digamma$
  3. \gcd$
  4. \gets$
  5. \gnapprox\ \gneq\ \gneqq\ \gnsim$
  6. \grave{expression}$
  7. \ge\ \le$
  8. \geq\ \geqq\ \geqslant$
  9. \gg\ \ggg\ \gggtr$
  10. \gt\ \gtrapprox\ \gtreqless\ \gtreqqless\ \gtrless\ \gtrsim\ \gvertneqq$
  11. \lessdot\ \gtrdot\ \ltimes\ \rtimes$
  12. \alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta
    \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu$
    \nu\ \xi\ \omicron\ \pi\ \rho\ \sigma
    \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega
    \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi
  13. \Alpha\ \Beta\ \Gamma\ \Delta\ \Epsilon\ \Zeta\
    \Eta\ \Theta$
    \Iota\ \Kappa\ \Lambda\ \Mu\ \Nu\ \Xi\ \Omicron
    \Pi\ \Rho\ \Sigma\ \Tau\ \Upsilon\ \Phi\ \Chi\ \Psi\ \Omega\ \varDelta
  14. \aleph\ \beth\ \daleth\ \gimel\ \complement
    \ell\ \eth\ \hbar\ \hslash\ \mho\ \partial\ \wp\ \Re\ \Im

<G>:

  1. $\Game$
  2. $\gamma\ \Gamma\ \varGamma\ \digamma$
  3. $\gcd$
  4. $\gets$
  5. $\gnapprox\ \gneq\ \gneqq\ \gnsim$
  6. $\grave{expression}$
  7. $\ge\ \le$
  8. $\geq\ \geqq\ \geqslant$
  9. $\gg\ \ggg\ \gggtr$
  10. $\gt\ \gtrapprox\ \gtreqless\ \gtreqqless\ \gtrless\ \gtrsim\ \gvertneqq$
  11. $\lessdot\ \gtrdot\ \ltimes\ \rtimes$
  12. $\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta$
    $\eta\ \theta\ \iota\ \kappa\ \lambda\ \mu$
    $\nu\ \xi\ \omicron\ \pi\ \rho\ \sigma$
    $\tau\ \upsilon\ \phi\ \chi\ \psi\ \omega$
    $\varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi$
  13. $\Alpha\ \Beta\ \Gamma\ \Delta\ \Epsilon\ \Zeta\
    \Eta\ \Theta$
    $\Iota\ \Kappa\ \Lambda\ \Mu\ \Nu\ \Xi\ \Omicron$
    $\Pi\ \Rho\ \Sigma\ \Tau\ \Upsilon\ \Phi\ \Chi\ \Psi\ \Omega\ \varDelta$
  14. $\aleph\ \beth\ \daleth\ \gimel\ \complement$
    $\ell\ \eth\ \hbar\ \hslash\ \mho\ \partial\ \wp\ \Re\ \Im$

     

     

>Top <H>:

  1. hat-1
  2. hat-2
  3. hat-3
  4. hbar/hslash
  5. heart suit
  6. hbox{##text##}
  7. hom
  8. hook left arrow/ right arrow
  9. hyperbolic cosine
  10. hyperbolic cotangent

<H>:

  1. \hat{expression}$
  2. \hat{A}\ \widehat{A}\ \check{A}\ \tilde{A}\
    \widetilde{A}\ \acute{A}\
    \grave{A}\ \dot{A}$
  3. \ddot{A}\ \dddot{A}\ \ddddot{A}\ \breve{A}\ \bar{A}\ \vec{A}\ \overrightarrow{AB}$
  4. \hbar\ \hslash$
  5. \heartsuit$
  6. \hbox{text}$
  7. \hom$
  8. \hookleftarrow\ \hookrightarrow$
  9. \cosh$
  10. \coth$

<H>:

  1. $\hat{expression}$
  2. $\hat{A}\ \widehat{A}\ \check{A}\ \tilde{A}\
    \widetilde{A}\ \acute{A}\
    \grave{A}\ \dot{A}$
  3. $\ddot{A}\ \dddot{A}\ \ddddot{A}\ \breve{A}\ \bar{A}\ \vec{A}\ \overrightarrow{AB}$
  4. $\hbar\ \hslash$
  5. $\heartsuit$
  6. $\hbox{text}$
  7. $\hom$
  8. $\hookleftarrow\ \hookrightarrow$
  9. $\cosh$
  10. $\coth$

>Top < I1>:

  1. acute
  2. aleph
  3. amalgamation
  4. angle
  5. approximately
  6. arc cosine
  7. asymptotically equal to
  8. inj lim
  9. いんて
  10. integer
  11. inter text
  12. integer (displaystyle)
  13. integer (difinite)
  14. mho
  15. iota
  16. integer sample
  17. italic text

< I1 >:

  1. \ldotp\ \ldots$
  2. \fallingdotseq\ \risingdotseq$
  3. \iff$
  4. iiiint$
  5. \implies\ \impliedby$
  6. \in\ \ni\ \notin\ \subset\ \supset\ \subseteq\ \supseteq\ \cap\ \cup$
  7. \infty\ \propto\ \varpropto\ \bowtie\ \Join$
  8. \injlim$
  9. \int_{}^{}\ \displaystyle\int_0^{}
  10. \int\ \iint\ \iint_D\ \iiint\ \iiiint\ \idotsint\ \oint\ \oint_L\mathbf{A}\cdot d\mathbf{r}$
  11. begin{align}
    s_1&=a_1,\\
    s_2&=a_1+a_2,\\
    \text{generally,} \\
    s_n&=a_1+a_2+\cdots+a_n
    \end{align}$
  12. \displaystyle\int_{0}^{n}f(x)dx$
  13. \int^2_0 (x+1)dx=\left[\frac{1}{2}x^2+x\right]^2_0
    =\frac{1}{2}x^2+x\bigr|^2_0= 4$
  14. \mho\ \forall\ \exists$
  15. \iota$
  16. \int_{lower}^{upper}expression$
  17. \it{text}$

< I1 >:

  1. $\ldotp\ \ldots$
  2. $\fallingdotseq\ \risingdotseq$
  3. $\iff$
  4. $iiiint$
  5. $\implies\ \impliedby$
  6. $\in\ \ni\ \notin\ \subset\ \supset\ \subseteq\ \supseteq\ \cap\ \cup$
  7. $\infty\ \propto\ \varpropto\ \bowtie\ \Join$
  8. $\injlim$
  9. $\int_{*}^{*}\ \displaystyle\int_0^{*}$
  10. $\int\ \iint\ \iint_D\ \iiint\ \iiiint\ \idotsint\ \oint\ \oint_L\mathbf{A}\cdot d\mathbf{r}$
  11. $\begin{align}
    s_1&=a_1,\\
    s_2&=a_1+a_2,\\
    \text{generally,} \\
    s_n&=a_1+a_2+\cdots+a_n
    \end{align} $
  12. $\displaystyle\int_{0}^{n}f(x)dx$
  13. $\int^2_0 (x+1)dx=\left[\frac{1}{2}x^2+x\right]^2_0
    =\frac{1}{2}x^2+x\bigr|^2_0 =4$
  14. $\mho\ \forall\ \exists$
  15. $\iota$
  16. $\int_{lower}^{upper}expression$
  17. $\it{text}$

>Top < I2>:

< I2 >:

  1. \ begin{eqnarray}
    a_0=\frac{1}{\pi} \left[\int_0^{\pi} a \sin kt \cdot dt + \int_{\pi}^{2\pi} (-a) \sin kt \cdot dt\right]=0
    \ end{eqnarray}$

< I2>:

  1. $\begin{eqnarray}
    a_0=\frac{1}{\pi}\left[\int_0^{\pi} a \sin kt \cdot dt + \int_{\pi}^{2\pi} (-a) \sin kt \cdot dt\right]=0
    \end{eqnarray}$

>Top <J>:

  1. join

<J>:

  1. \Join$

<J>:

  1. $\Join$

>Top <K>:

  1. kappa
  2. kernel

<K>

  1. \kappa$
  2. \ker$

<K>:

  1. $\kappa\ \varkappa$
  2. $\ker$

>Top <L1>:

  1. lambda/Lambda
  2. LaTeX
  3. ldotp/ldots
  4. leads to
  5. left angle/right angle
  6. left arrow/right arrow
  7. Left arrow (double)/Right
  8. left brace/right brace
  9. left bracket/right bracket
  10. leftarrowtail/ rightarrowtail
  11. left ceiling/right ceiling
  12. left arrow (under)/ left right arrow (under)
  13. right arrow (under)/ underline
  14. left harpoon down/right
  15. left harpoon up/right
  16. leftleftarrows/ rightrightarrows
  17. left right arrow/ left right arrow (double)
  18. leftrgitrrows/left right
  19. leftthreetimes/ rightthreetimes
  20. harpoons/ leftrightssquigarrow
  21. left tack

<L1>:

  1. \lambda\ \Lambda\ \varLamda$
  2. \LaTeX$
  3. \ldotp\ \ldots$
  4. \leadsto$
  5. \langle\ \rangle$
  6. \leftarrow\ \rightarrow$
  7. \Leftarrow\ \Rightarrow$
  8. \lbrace\ \rbrace$
  9. \lbrack\ \rbrack$
  10. \leftarrowtail\ \rightarrowtail$
  11. \lceil\ \rceil\ \lfloor\ \rfloor\ \left[\ \right]$
  12. \underleftarrow{expression}\ \underleftrightarrow{expression}$
  13. \underrightarrow{expression}\ \underline{text}$
  14. \leftharpoondown\ \rightharpoondown$
  15. \leftharpoonup\ \rightharpoonup$
  16. \leftleftarrows\ \rightrightarrows$
  17. \leftrightarrow\ \Leftrightarrow$
  18. \leftrightarrows\ \ leftrightharpoons\ \leftrightsquigarrow$
  19. \leftthreetimes\ \rightthreetimes$
  20. \dashv$
  21. \le\ \ge$

<L1>:

  1. $\lambda\ \Lambda\ \varLambda$
  2. $\LaTeX$
  3. $\ldotp\ \ldots$
  4. $\leadsto$
  5. $\langle\ \rangle$
  6. $\leftarrow\ \rightarrow$
  7. $\Leftarrow\ \Rightarrow$
  8. $\lbrace\ \rbrace\ \{ \ \}$
  9. $\lbrack\ \rbrack$
  10. $\leftarrowtail\ \rightarrowtail$
  11. $\lceil\ \rceil\ \lfloor\ \rfloor\ \left[\ \right]$
  12. $\underleftarrow{expression}\ \underleftrightarrow{expression}$
  13. $\underrightarrow{expression}\ \underline{text}$
  14. $\leftharpoondown\ \rightharpoondown$
  15. $\leftharpoonup\ \rightharpoonup$
  16. $\leftleftarrows\ \rightrightarrows$
  17. $\leftrightarrow\ \Leftrightarrow$
  18. $\leftrightarrows\ \leftrightharpoons\ \leftrightsquigarrow$
  19. $\leftthreetimes\ \rightthreetimes$
  20. $\dashv$
  21. $\le\ \ge$

>Top <L2>:

  1. leqq/geqq
  2. lessapprox/ greaterapprox
  3. lessdot/greaterdot
  4. less than/greater than
  5. less than or equal to/ greater than or equal to
  6. less than or equal to (0ther)/greater than or equal to (other)/...
  7. less than or equal to (slanted)/greater than
  8. include
  9. limit inferior/ limit superior/ direct limit/ inverse limit
  10. include
  11. vdash
  12. varliminf

<L2>:

  1. \le\ \leq\ \ll\ \ge\ \geq\ \gg\ \leqq\ \geqq$
  2. \lessapprox\ \gtrapprox$
  3. \lessdot\ \gtrdot$
  4. \lt\ \gt$
  5. \leq\ \geq\ \pm\ \mp\ \times\ \div$
  6. \land\ \wedge\ \vee\ \cap\ \cup\ \sqcap\ \sqcup$
  7. \leqslant\ \geqslant\ \ll\ \lll\ \gg\ \ggg$
  8. \subset\ \subseteq\ \sqsubseteq\ \supset\ \supseteq\ \sqsupseteq$
  9. \prec\ \preceq\ \succ\ \succeq$
  10. \in\ \ni\ \notin$
  11. \vdash\ \dashv$
  12. \varliminf\ \varlimsup\ \varinjlim\ \varprojlim$

<L2>:

  1. $\le\ \leq\ \ll\ \ge\ \geq\ \gg\ \leqq\ \geqq$
  2. $\lessapprox\ \gtrapprox$
  3. $\lessdot\ \gtrdot$
  4. $\lt\ \gt$
  5. $\leq\ \geq\ \pm\ \mp\ \times\ \div$
  6. $\land\ \wedge\ \vee\ \cap\ \cup\ \sqcap\ \sqcup$
  7. $\leqslant\ \geqslant\ \ll\ \lll\ \gg\ \ggg$
  8. $\subset\ \subseteq\ \sqsubseteq\ \supset\ \supseteq\ \sqsupseteq$
  9. $\prec\ \preceq\ \succ\ \succeq$
  10. $\in\ \ni\ \notin$
  11. $\vdash\ \dashv$
  12. $\varliminf\ \varlimsup\ \varinjlim\ \varprojlim$

>Top <L3>:

  1. log/sine/cosine type-1
  2. log type-2
  3. log type-3
  4. log type-4
  5. log type-5
  6. log type-6
  7. limit-1
  8. limit-2
  9. limit-3
  10. limit-4
  11. line break
  12. logical conjugation/ disjucation / negation /universal quantifier / existential quantifier
  13. lozenge
  14. lrcorner
  15. lsh/rsh
  16. ltimes/rtimes
  17. lVert/lvert/rVert/rvert
  18. lvertneqq/gvertneqq

<L3>:

  1. \arccos\ \arcsin\ \arctan\ \arg\ \cos$
  2. \cosh\ \cot\ \coth\ \csc\ \deg\ \det$
  3. \dim\ \exp\ \gcd\ \hom\ \inf\ \ker$
  4. \lg\ \lim\ \liminf\ \limsup\ \ln$
  5. \log\ \log_e\ \max\ \min\ \Pr \ \sec$
  6. \sin\ \sinh\ \sup\ \tan\ \tanh$
  7. \lim_{x\to \infty}f(x)$
  8. \displaystyle\lim_{x\to \infty}f(x)\
    \displaystyle\lim
    _{\substack{p\to 0\\q\to 0}}f(x)$
  9. \ begin{eqnarray}
    \ lim_{s \to \infty}f(x)
    \ end{eqnarray}$
  10. \lim_{n\to\infty}\ \displaystyle\lim_{n\to\infty}$
  11. aaaa\\aaaa$
  12. \land\ \lor\ \lnot\ \forall\  \exists$
  13. \lozenge$
  14. \lrcorner$
  15. \Lsh\ \Rsh$
  16. \ltimes\ \rtimes$
  17. \lVert\ \lvert\ \rVert\ \rvert$
  18. \lvertneqq\ \gvertneqq$

<L3>:

  1. $\arccos\ \arcsin\ \arctan\ \arg\ \cos$
  2. $\cosh\ \cot\ \coth\ \csc\ \deg\ \det$
  3. $\dim\ \exp\ \gcd\ \hom\ \inf\ \ker$
  4. $\lg\ \lim\ \liminf\ \limsup\ \ln$
  5. $\log\ \log_e\ \max\ \min\ \Pr \ \sec$
  6. $\sin\ \sinh\ \sup\ \tan\ \tanh$
  7. $\lim_{x\to \infty}f(x)$
  8. $\displaystyle\lim_{x\to \infty}f(x)\
    \displaystyle\lim_{\substack{p\to 0\\q\to 0}}f(x)$
  9. $\begin{eqnarray}
    \lim_{s \to \infty}f(x)
    \end{eqnarray}$
  10. $\lim_{n\to\infty}\ \displaystyle\lim_{n\to\infty}$
  11. $aaaa\\aaaa$
  12. $\land\ \lor\ \lnot\ \forall\  \exists$
  13. $\lozenge$
  14. $\lrcorner$
  15. $\Lsh\ \Rsh$
  16. $\ltimes\ \rtimes$
  17. $\lVert\ \lvert\ \rVert\ \rvert$
  18. $\lvertneqq\ \gvertneqq$

>Top <L4>:

  1. line break
  2. half space
  3. ASCII+half space
  4. Comment line
  5. half space
  6. spacing
  7. special characters

<L4>:

  1. Type 'Enter' key twice ␣␣
  2. ’Empty row␣' means 'paragraph'
  3. ASCII+Enter means '␣'
  4. Neglect line break: add '%' (used adding comment)
    Supercalifragilistic%コメントです。
  5. Fill␣in␣the␣(␣␣␣␣)'s.$
    Fill in the ( )'s.$
    Fill\ in\ the\ (\ )'s.$
  6. Fill~in~the~(~~~~~)'s.$
  7. \LaTeX is cool! $
    \LaTeX\ is\ cool! $ ... ok space
    \LaTeX{} is cool! $
    {\LaTeX} is cool! $
  8. \_\ \{\ \}\ \S\ \backslash\ \bullet\ \cdot
    \ \circ\ \ast\ \star
    \ \diamond \ \dagger$

<L4>:

  1. Type 'Enter' key twice ␣␣
  2. ’Empty row␣' means 'paragraph'
  3. ASCII+Enter means '␣'
  4. Neglect line break: add '%' (used adding comment)
    $Supercalifragilistic%コメントです。$
  5. $Fill␣in␣the␣(␣␣␣␣)'s.$
    $Fill in the ( )'s.$
    $Fill\ in\ the\ (\ )'s.$
  6. $Fill~in~the~(~~~~~)'s.$
  7. $\LaTeX is cool! $
    $\LaTeX\ is\ cool! $ ... ok space
    $\LaTeX{} is cool! $
    ${\LaTeX} is cool! $
  8. $\_\ \{\ \}\ \S\ \backslash\ \bullet\ \cdot\ \circ\ \ast
    \ \star\ \diamond \ \dagger$

>Top <M>:

  1. maltese
  2. maps to
  3. math font-1
  4. math font-2
  5. math font-3
  6. math font-4
  7. math font-5
  8. math font-6
  9. math structure-1 (mathstrut)
  10. math structure-2 (vphantom)
  11. math structure-3
    (smash[])

<M>:

  1. \maltese$
  2. \mapsto$
  3. \mathbb{N}\ \mathbb{Z}\ \mathb{Q}\  \mathbb{R}\ \mathbb{C}\ \3\in\mathbb{B}\ \3.14\notin\math{Z}\ \mathbb{O}\subset\mathbb{R}
  4. \mathbf{math}\ \mathbb{math}\ \ mathcal{math}\ \mathfrak{math}\ \ mathit{math}\ \mathop{operator}\ \mathsf{math}\ \mathtt{math}$
  5. x+\mathrm{const}\ \ x\,\mathrm{cm}^2\ \ x_\mathrm{max}\ \mathit{diff}(x)$
  6. \ H(x) \ \mathrm{H}(x)\ \mathcal{H}(x)\ \mathsf{H}(x)\ \mathtt{H}(x)$
  7. \mathcal{ABCDEFGHIJKL MNOPQRSTUVWXYZ}$
  8. \mathrm{H}(x)\ \mathcal{H}(x)\ \mathsf{H}(x)\ \mathtt{H}(x)$
  9. \sqrt{g}+\sqrt{h}$
    $\sqrt{\mathstrut g}+\sqrt{\mathstrut h}$
  10. \sqrt{\vphantom{gh} g}+\sqrt{\vphantom{gh} h}$
  11. \sqrt{x}+\sqrt{\smash[b]{y}}$

<M>:

  1. $\maltese$
  2. $\mapsto$
  3. $\mathbb{N}\ \mathbb{Z}\ \mathbb{Q}\  \mathbb{R}\ \mathbb{C}\ 3\in\mathbb{B}\ 3.14\notin\mathbb{Z}\ \mathbb{O}\subset\mathbb{R}$
  4. $\mathbf{math}\ \mathbb{math}
    \ \mathcal{math}\ \mathfrak{math}$
    $\ \mathit{math}\ \mathop{operator}\ \mathsf{math}\ \mathtt{math}$
  5. $x+\mathrm{const}\ \ x\,\mathrm{cm}^2\ \ x_\mathrm{max}\ \mathit{diff}(x)$
  6. $\ H(x) \ \mathrm{H}(x)\ \mathcal{H}(x)\ \mathsf{H}(x)\ \mathtt{H}(x)$
  7. $\mathcal{ABCDEFGHIJKLMNO\\
    PQRSTUVWXYZ}$
  8. $\mathrm{H}(x)\ \mathcal{H}(x)\ \mathsf{H}(x)\ \mathtt{H}(x)$
  9. $\sqrt{g}+\sqrt{h}$
    $\sqrt{\mathstrut g}+\sqrt{\mathstrut h}$
  10. $\sqrt{\vphantom{gh} g}+\sqrt{\vphantom{gh} h}$
  11. $\sqrt{x}+\sqrt{\smash[b]{y}}$

>Top <M2>:

  1. まとり
  2. まとり
  3. まとり
  4. matrix
  5. matrix pmatrix-1
  6. matrix vmatrix-2
  7. matrix pmatrix-2
  8. matrix bmatrix-2
  9. matrix vmatrix-3
  10. matrix Vmatrix
  11. matrix
  12. matrix
  13. matrix
  14. matrix
  15. matrix
  16. matrix
  17. elementary matrix
  18. matrix
  19. holizontal line
  20. matrix
  21. matrix
  22. measured angle
  23. min
  24. minus plus/plus minus
  25. mod-1
  26. mod-2
  27. models
  28. modulo
  29. modulo (parenthesized)
  30. mu
  31. multimap

<M2>:

  1. \pmatrix{a&b\\c&d}
  2. \pmatrix{1&0&0\\0&1&0\\0&0&1}
  3. \ begin{vmatrix}1&0\\1&-5\end{vmatrix}
  4. \matrix{a&b\cr c&d}
  5. \pmatrix{a&b\\c&d}
  6. $\begin{bmatrix}a&b\\c&d\end{bmatrix}
  7. $\begin{pmatrix}a&b\\c&d\end{pmatrix}
  8. $\begin{vmatrix}a&b\\c&d\end{vmatrix}
  9. \ begin{bmatrix}
    a&b\\
    c&d \\
    end{bmatrix}
  10. \ begin{vmatrix}
    a&b\\
    c&d \\
    \end{vmatrix}
  11. \ begin{Vmatrix}
    a&b\\
    c&d \\
    \ end{Vmatrix}
  12. A=\left[\begin{array}{ccc}
    a&b&c\\
    d&e&f\\
    g&h&i
    \end{array}\right]
  13. ^t\A\ A^{\mathrm{T}}
  14. A=begin{pmatrix}
    a_{11} &\dots & a_{1n}\\
    &\dots\dots&\\
    a_{m1} &\dots & a_{mn}
    \end{pmatrix}
  15. \pmatrix{a_{11}&\cdots&a_{1i}&\cdots&a_{1n}\\
    \vdots&\ddots&&&\vdots\\
    a_{i1}&&a_{ii}&&a_{in}\\
    \vdots&&&\ddots&\vdots\\
    a_{n1}&\cdots&a_{ni}&\cdots&a_{nn}}
  16. \left(\ begin{array}{ccc|c}1&0&-1&0
    \\0&1&-1&0\\0&0&0&0\\
    \end{array}\right)
  17. $R_{i, j, c}=\pmatrix{1&&&&&&\\&\ddots&&&&&\\
    &&1&&c&&\\&&&\ddots&&&\\&&&&1&&\\
    &&&&&\ddots&\\&&&&&&1}
  18. \ begin{array}{|c|c|}
    a&a^2\\
    \hline
    11&121\\
    12&144\\
    \ end{array}
  19. A=left(
    begin{array}{@{\,}c|ccc@{\,}}
    a_{11} & 0 & \ldots & 0 \\ \hline
    0 & A_{22} & \ldots & a_{2n}\\
    \vdots & \vdots & \ddots &\vdots\\
    0 & a_{m2} & \ldots & a_{mn}
    \end{array}
    \right)
  20. \Lambda=\ begin{bmatrix}\lambda_{1}&&
    \\&\ddots&\\&&\lambda_{k}\end{bmatrix}
  21. begin{pmatrix}
    \lambda_1&&&&\\
    &\lambda_2&&\huge{0}&\\
    &&\ddots&&\\
    &\huge{0}&&\lambda_{n-1}&\\
    &&&&\lambda_n
    \end{pmatrix}$
  22. \measuredangle$
  23. \min$
  24. \mp\ \pm$
  25. m \bmod n$
  26. a \equiv b \pmod{n}$
  27. \models$
  28. \mod{expression}$
  29. \pmod{expression}$
  30. \mu$
  31. \multimap$

<M2>:

  1. $\pmatrix{a&b\\c&d}$
  2. $\pmatrix{1&0&0\\0&1&0\\0&0&1}$
  3. $\begin{vmatrix}1&0\\0&1\end{vmatrix}$
  4. $\matrix{a&b\cr c&d}$
  5. $\pmatrix{a&b\\c&d}$
  6. $\begin{bmatrix}a&b\\c&d\end{bmatrix}$
  7. $\begin{pmatrix}a&b\\c&d\end{pmatrix}$
  8. $\begin{vmatrix}a&b\\c&d\end{vmatrix}$
  9. $\begin{bmatrix}
    a&b\\
    c&d \\
    \end{bmatrix}$
  10. $\begin{vmatrix}
    a&b\\
    c&d \\
    \end{vmatrix}$
  11. $\begin{Vmatrix}
    a&b\\
    c&d \\
    \end{Vmatrix}$
  12. $A=\left[\begin{array}{ccc}
    a&b&c\\
    d&e&f\\
    g&h&i \end{array}\right]$
  13. $^tA\ A^{\mathrm{T}}$
  14. $A=\begin{pmatrix}
    a_{11} &\dots & a_{1n}\\
    &\ldots\ldots &\\
    a_{m1} &\dots & a_{mn}
    \end{pmatrix}$
  15. $\pmatrix{a_{11}&\cdots&a_{1i}&\cdots&a_{1n}\\
    \vdots&\ddots&&&\vdots\\
    a_{i1}&&a_{ii}&&a_{in}\\
    \vdots&&&\ddots&\vdots\\
    a_{n1}&\cdots&a_{ni}&\cdots&a_{nn}}$
  16. $\left(\begin{array}{ccc|c}1&0&-1&0
    \\0&1&-1&0\\0&0&0&0\\\end{array}\right)$
  17. $R_{i, j, c}=\pmatrix{1&&&&&&\\&\ddots&&&&&\\
    &&1&&c&&\\&&&\ddots&&&\\&&&&1&&\\
    &&&&&\ddots&\\&&&&&&1}$
  18. $\begin{array}{|c|c|}
    a&a^2\\
    \hline
    11&121\\
    12&144\\
    \end{array} $
  19. $A=\left(
    \begin{array}{@{\,}c|ccc@{\,}}
    a_{11} & 0 & \ldots & 0 \\ \hline
    0 & a_{22} & \ldots & a_{2n}\\
    \vdots & \vdots & \ddots &\vdots\\
    0 & a_{m2} & \ldots & a_{mn}
    \end{array}
    \right)$
  20. $\Lambda=\begin{bmatrix}\lambda_{1}&&
    \\&\ddots&\\&&\lambda_{k}\end{bmatrix}$
  21. $\begin{pmatrix}
    \lambda_1&&&&\\
    &\lambda_2&&\huge{0}&\\
    &&\ddots&&\\
    &\huge{0}&&\lambda_{n-1}&\\
    &&&&\lambda_n
    \end{pmatrix}$
  22. $\measuredangle$
  23. $\min$
  24. $\mp\ \pm$
  25. $m \bmod n$
  26. $a \equiv b \pmod{n}$
  27. $\models$
  28. $\mod{expression}$
  29. $\pmod{expression}$
  30. $\mu$
  31. $\multimap$
  1. matrix1
  2. matrix2
  1. $R_\theta = \begin{bmatrix} \cos \theta & -\sin
    \theta \\ \sin \theta & \phantom{-} \cos \theta
    \end{bmatrix}
  2. $\begin{matrix}
    c(1)^{n-1} & \dots & c(1)^2 & c(1) & 1 \\
    c(2)^{n-1} & \dots & c(2)^2 & c(2) & 1 \\
    \vdots & \ddots & \vdots & \vdots & \vdots \\
    c(n)^{n-1} & \dots & 1 & 0 & 0
    \end{matrix}
  1. $R_\theta = \begin{bmatrix} \cos \theta & -\sin
    \theta \\ \sin \theta & \phantom{-} \cos \theta
    \end{bmatrix}$
  2. $\begin{matrix}
    c(1)^{n-1} & \dots & c(1)^2 & c(1) & 1 \\
    c(2)^{n-1} & \dots & c(2)^2 & c(2) & 1 \\
    \vdots & \ddots & \vdots & \vdots & \vdots \\
    c(n)^{n-1} & \dots & 1 & 0 & 0
    \end{matrix}$

>Top <N1>:

  1. nabla
  2. natural
  3. natural logarithm
  4. negation
  5. ncong
  6. ngeq/ngeqq/nleq/nleqq
  7. ngtr/ngeqslant/ nletr/nleqslant
  8. nleftrightarrow/ nLeftrightarrow
  9. nless/nleqslant/ ngrt/ngeqslant

<N1>:

  1. \nabla$
  2. \natural$
  3. \ln$
  4. \neg\ \lfloor\ \llcorner$
  5. \ncong$
  6. \ngeq\ \ngeqq\ \nleq\ \nleqq$
  7. \ngtr\ \ngeqslant\ \nless\ \nleqslant$
  8. \nleftrightarrow\ \nLeftrightarrow$
  9. \nless\ \nleqslant\ \ngtr\ \ngeqslant$

<N1>:

  1. $\nabla$
  2. $\natural$
  3. $\ln$
  4. $\neg\ \lfloor\ \llcorner$
  5. $\ncong$
  6. $\ngeq\ \ngeqq\ \nleq\ \nleqq$
  7. $\ngtr\ \ngeqslant\ \nless\ \nleqslant$
  8. $\nleftrightarrow\ \nLeftrightarrow$
  9. $\nless\ \nleqslant\ \ngtr\ \ngeqslant$

>Top <N2>:

  1. not
  2. not (sample)
  3. not equal to/not equal to
  4. not in
  5. not parallel
  6. nothing (var)
  7. NE arrow/NW arrow/ SE arrow/ SW arrow
  8. nprec/npreceq/ nsucc/ nsucceq
  9. prec/preceq/ succ/ succeq
  10. nrightarrow/nRightarrow/ nleftarrow/nLeftarrow
  11. rightarrow/Rightarrow/ leftarrow/Leftarrow
  12. nshortmid/nshortparallel
  13. shortmid/shortparallel

<N2>:

  1. \not\ \neg$
  2. \ begin{eqnarray}
    x \not=y
    \end{eqnarray}
    \begin{eqnarray}
    x \not \equiv y
    \ end{eqnarray}
  3. \ne\ \neq$
  4. \notin\ \in$
  5. \nparallel\ \parallel$
  6. \varnothing\ \emptyset$
  7. \nearrow\ \nwarrow\ \searrow\ \swarrow$
  8. \nprec\ \npreceq\ \nsucc\ \nsucceq$
  9. \prec\ \preceq\ \succ\ \succeq$
  10. \nrightarrow\ \nRightarrow\ \nleftarrow\ \nLeftarrow$
  11. \rightarrow\ \Rightarrow\ \leftarrow\ \Leftarrow$
  12. \nshortmid\ \nshortparallel$
  13. \shortmid\ \shortparallel$

<N2>:

  1. $\not\ \neg$
  2. $\begin{eqnarray}
    x \not=y
    \end{eqnarray}$
    $\begin{eqnarray}
    x \not \equiv y
    \end{eqnarray}$
  3. $\ne\ \neq$
  4. $\notin\ \in$
  5. $\nparallel\ \parallel$
  6. $\varnothing\ \emptyset$
  7. $\nearrow\ \nwarrow\ \searrow\ \swarrow$
  8. $\nprec\ \npreceq\ \nsucc\ \nsucceq$
  9. $\prec\ \preceq\ \succ\ \succeq$
  10. $\nrightarrow\ \nRightarrow\ \nleftarrow\ \nLeftarrow$
  11. $\rightarrow\ \Rightarrow\ \leftarrow\ \Leftarrow$
  12. $\nshortmid\ \nshortparallel$
  13. $\shortmid\ \shortparallel$

>Top <N3>:

  1. nsim/sim
  2. not a subset of or equal to/ nsuseteqq/ nsupseteq/ nsupseteqq
  3. a subset of or equal to/ suseteqq/supseteq/ supseteqq
  4. ntriangleleft/ ntrianglelefteq/ ntriangleright/ ntrianglerighteq
  5. triangleleft/
    trianglelefteq/ triangleright/ trianglerighteq
  6. nu
  7. nvdash/ nvDash/ nVdash/ nVDash
  8. vdash/ vDash/ Vdash

<N3>:

  1. \nsim\ \sim$
  2. \nsubseteq\ \nsubseteqq\ \nsupseteq\ \nsupseteqq$
  3. \subseteq\ \subseteqq\ \supseteq\ \supseteqq$
  4. \ntriangleleft\ \ntrianglelefteq\ \ntriangleright\ \ntrianglerighteq$
  5. \triangleleft\ \trianglelefteq\ \triangleright\ \trianglerighteq$
  6. \nu$
  7. \nvdash\ \nvDash\ \nVdash\ \nVDash$
  8. \vdash\ \vDash\ \Vdash$

<N3>:

  1. $\nsim\ \sim$
  2. $\nsubseteq\ \nsubseteqq\ \nsupseteq\ \nsupseteqq$
  3. $\subseteq\ \subseteqq\ \supseteq\ \supseteqq$
  4. $\ntriangleleft\ \ntrianglelefteq\ \ntriangleright\ \ntrianglerighteq$
  5. $\triangleleft\ \trianglelefteq\ \triangleright\ \trianglerighteq$
  6. $\nu$
  7. $\nvdash\ \nvDash\ \nVdash\ \nVDash$
  8. $\vdash\ \vDash\ \Vdash$

>Top <O>:

  1. omega/Omega
  2. omicron
  3. overbar
  4. over denominator
  5. overbrace
  6. overleftarrow/ overrightarrow/ overleftrightarrow
  7. overrightarrow (sample)
  8. overrightarrow-1
  9. overline
  10. overline-2
  11. overline-3
  12. overline-4
  13. overbrace
  14. overset
  15. owns

<O>:

  1. \omega\ \Omega\ \varOmega$
  2. \omicron$
  3. \bar{expression}$
  4. \over denominator$
  5. \overbrace{expression}^{over}\ \ \underbrace{expression}_{under}$
  6. \overleftarrow{expression}\ \overrightarrow{expression}\ \overleftrightarrow{expession}$
  7. \begin{eqnarray}
    \overrightarrow{\rm OA}
    \end{eqnarray$
  8. \overrightarrow{A}\ \overleftarrow{A}\ \overleftrightarrow{A}\ \underrightarrow{A}\ \underleftarrow{A}\ \underleftrightarrow{A}$
  9. \overline{P\cap Q}=\overline{P} \cup \overline{Q}
  10. \overline{x+y}\ \underline{x+y}\ \widehat{xyz}\ \widetilde{xy}$
  11. \overbrace{x+y}\ \underbrace{x+y}$
  12. \overrightarrow{\mathrm{OA}}\ \overleftarrow{\mathrm{OA}}$
  13. \overbrace{a+\cdots+z}^{26} \; \underbrace{a+\cdots+z}_{26}$
  14. \overset{upper}{lower}$
  15. \owns$

<O>:

  1. $\omega\ \Omega\ \varOmega$
  2. $\omicron$
  3. $\bar{expression}$
  4. $\over denominator$
  5. $\overbrace{expression}^{over}\ \ \underbrace{expression}_{under}$
  6. $\overleftarrow{expression}\ \overrightarrow{expression}\ \overleftrightarrow{expession}$
  7. $\begin{eqnarray}
    \overrightarrow{\rm OA}
    \end{eqnarray}$
  8. $\overrightarrow{A}\ \overleftarrow{A}\ \overleftrightarrow{A}\ \underrightarrow{A}\ \underleftarrow{A}\ \underleftrightarrow{A}$
  9. $\overline{P\cap Q}=\overline{P} \cup \overline{Q}$
  10. $\overline{x+y}\ \underline{x+y}\ \widehat{xyz}\ \widetilde{xy}$
  11. $\overbrace{x+y}\ \underbrace{x+y}$
  12. $\overrightarrow{\mathrm{OA}}\ \overleftarrow{\mathrm{OA}}$
  13. $\overbrace{a+\cdots+z}^{26} \; \underbrace{a+\cdots+z}_{26}$
  14. $\overset{upper}{lower}$
  15. $\owns$

>Top <P1>:

  1. partial
  2. nabla
  3. parallel
  4. ちゅう
  5. 自動parenthesis
  6. parenthesis-1
  7. parenthesis-2
  8. various parenthesis
  9. bracket
  10. parenthesis (sample)
  11. parenthesis (extendable)
  12. parenthesis (extendable)
  13. absolute sign (sample)
  14. へんび
  15. partial
  16. perpendicular
  17. phi/Phi/varphi
  18. pi/Pi/varpi
  19. pitchfork
  20. Planck constant

<P1>:

  1. \frac{\partial f}{\partial y},
    \frac{\partial^2 f}{\partial^2 y} $
  2. \Delta=\nabla^2=
    \frac{\partial^2 f}{\partial x^2}+
    \frac{\partial^2 f}{\partial y^2}$
  3. \parallel\ \nparallel\ \shortparallel\ \nshortparallel\ \nmid\ \nshortmid
  4. \left.\right)\ \left(\right)\ \bigl(\bigr)\ \{\}\ \left[\right]\ \bigl[\bigr]\ \langle\ \rangle
  5. a\left(\left[b\left\{c\left(d+e)^x\right)\right\}
    ^{\frac{y}{z}}\right]\right)$
  6. a\Biggl( b\biggl( c\Bigl( d\bigl( d(f+g) \bigr) \Bigr) \biggr) \Biggr)
  7. a\Biggl\{ b\biggl\{ c\Bigl
    \{ d\bigl\{ d\{f+g\}
    \bigr\} \Bigr\}\biggr\} \Biggr\}
  8. a\left[ b\left\{
    \frac{1}{2}\left(
    c(d+e)^x
    \right)
    \right\}^{\frac{x}{z}}
    \right]
  9. \{\ \}\ \lfloor\ \rfloor\ \lceil\ \rceil\ \langle\ \rangle$
  10. a\Biggl[ b\biggl[ c\Bigl[ d\bigl[ d[f+g] \big] \Bigr] \biggr] \Biggr]$
  11. a\left[b\left\{\frac{1}{2}\left(c(d+e)^x
    \right)\right\}^{\frac{y}{z}}\right]$
  12. \ begin{eqnarray}
    \left(\left(a+b\right)^2-\left(c+d\right)^2\right)
    \ end{eqnarray}$
  13. \ begin{eqnarray}
    \Bigl|\left|x+y\right|-\left|z+w\right|\Bigl|
    \ end{eqnarray}$
  14. \frac{\partial }{\partial }
  15. \partial$
  16. \perp\ \bot\ \top$
  17. \phi\ \Phi\ \varphi\ \varPhi$
  18. \pi\ \Pi\ \varpi$
  19. \pitchfork$
  20. \hbar$

<P1>:

  1. $\frac{\partial f}{\partial y},
    \frac{\partial^2 f}{\partial^2 y} $
  2. $\Delta=\nabla^2=
    \frac{\partial^2 f}{\partial x^2}+
    \frac{\partial^2 f}{\partial y^2}$
  3. $\parallel\ \nparallel\ \shortparallel\ \nshortparallel\ \nmid\ \nshortmid$
  4. $\left.\right)\ \left(\right)\ \bigl(\bigr)\ \{\}\ \left[\right]\ \bigl[\bigr]\ \langle\ \rangle$
  5. $a\left(\left[b\left\{c\left(d+e)^x\right)\right\}
    ^{\frac{y}{z}}\right]\right)$
  6. $a\Biggl( b\biggl( c\Bigl( d\bigl( d(f+g) \bigr) \Bigr) \biggr) \Biggr)$
  7. $a\Biggl\{ b\biggl\{ c\Bigl\{ d\bigl
    \{ d\{f+g\} \bigr\} \Bigr\} \biggr\} \Biggr\}$
  8. $a\left[ b\left\{
    \frac{1}{2}\left(
    c(d+e)^x
    \right)
    \right\}^{\frac{x}{z}}
    \right] $
  9. $\{\ \}\ \lfloor\ \rfloor\ \lceil\ \rceil\ \langle\ \rangle$
  10. $a\Biggl[ b\biggl[ c\Bigl[ d\bigl[ d[f+g] \big] \Bigr] \biggr] \Biggr]$
  11. $a\left[b\left\{\frac{1}{2}\left(c(d+e)^x
    \right)\right\}^{\frac{y}{z}}\right]$
  12. $\begin{eqnarray}
    \left(\left(a+b\right)^2-\left(c+d\right)^2\right)
    \end{eqnarray}$
  13. $\begin{eqnarray}
    \Bigl|\left|x+y\right|-\left|z+w\right|\Bigl|
    \end{eqnarray}$
  14. $\frac{\partial }{\partial }$
  15. $\partial$
  16. $\perp\ \bot\ \top$
  17. $\phi\ \Phi\ \varphi\ \varPhi$
  18. $\pi\ \Pi\ \varpi\ \varPi$
  19. $\pitchfork$
  20. $\hbar$

>Top <P2>:

  1. plus or minus/ minus or plus
  2. poor man's bold
  3. precedes/ precapprox/ precneqq/ precnsim/ precsim
  4. succedes/ succapprox/ succneqq/ succnsim/ succsim/
  5. prime
  6. product
  7. product (snippet)
  8. project limit
  9. proportional to/varpropto
  10. psi

 

<P2>:

  1. \pm\ \mp$
  2. \pmb{math}$
  3. \prec\ \precapprox\ \precneqq\ \precnsim\ \precsim
  4. \succ\ \succapprox\ \succneqq\ \succnsim\ \succsim$
  5. \prime$
  6. \prod\ \coprod\ \bigcup\ \bigsqcup$
  7. \prod_{lower}^{upper}expression$
  8. \projlim$
  9. \propto\ \varpropto$
  10. \varPsi$

<P2>:

  1. $\pm\ \mp$
  2. $\pmb{math}$
  3. $\prec\ \precapprox\ \precneqq\ \precnsim\ \precsim$
  4. $\succ\ \succapprox\ \succneqq\ \succnsim\ \succsim$
  5. $\prime\ \backprime$
  6. $\prod\ \coprod\ \bigcup\ \bigsqcup$
  7. $\prod_{lower}^{upper}expression$
  8. $\projlim$
  9. $\propto\ \varpropto$
  10. $\varPsi$
  1. phantom1
  2. phantom2
  1. $|x| = \begin{cases} \phantom{-} x& \text{if } x \geq 0 \\ -x & \text{if } x<0 \end{cases)
  2. $\begin{aligned}
    \text{first number} && \text{second number} \\
    10 \mbox{\phantom{=digit}} &&
    9 \mbox{\phantom{=digit}}
    \end{aligned}
  1. $|x| = \begin{cases} \phantom{-} x& \text{if } x \geq 0 \\ -x & \text{if } x<0 \end{cases} $
  2. $\begin{aligned}
    \text{first number} &&
    \text{second number} \\
    10 \mbox{\phantom{=digit}} &&
    9 \mbox{\phantom{=digit}}
    \end{aligned}$

>Top <Q>:

<Q>:

<Q>:

>Top <R1>:

  1. reference
  2. restriction
  3. rhd
  4. rho/varrho
  5. right angle/left angle
  6. right arrow/ right arrow (double)/ rightarrowtail/ right harpoon down/ right harpoon up
  7. left arrow/ left arrow (double)/ leftarrowtail/ left harpoon down/ left harpoon up/

<R1>:

  1. \Re\ \wp\ \ell\ \imath\ \jmath\ \aleph\ \hbar\ \Im\ \mho$
  2. \restriction$
  3. \rhd$
  4. \rho\ \varrho$
  5. \rangle\ \langle$
  6. \rightarrow\ \Rightarrow\ \rightarrowtail\ \rightharpoondown\ \rightharpoonup
  7. \leftarrow\ \Leftarrow\ \leftarrowtail\ \leftharpoondown\ \leftharpoonup$

<R1>:

  1. $\Re\ \wp\ \ell\ \imath\ \jmath\ \aleph\ \hbar\ \Im\ \mho$
  2. $\restriction$
  3. $\rhd\ \lhd\ \unrhd\ \unlhd$
  4. $\rho\ \varrho$
  5. $\rangle\ \langle$
  6. $\rightarrow\ \Rightarrow\ \rightarrowtail\ \rightharpoondown\ \rightharpoonup$
  7. $\leftarrow\ \Leftarrow\ \leftarrowtail\ \leftharpoondown\ \leftharpoonup$

>Top <R2>:

  1. right brace/left brace
  2. right bracket/left bracket
  3. right ceiling/left ceiling
  4. right floor/left floor
  5. right group/left group
  6. right left arrows/ left right arrows/ right left harpoons/ left right harpoons
  7. right moustache/ left moustache
  8. rightrightarrows/ leftleftarrows
  9. rightsquigarrow
  10. right tack/ Vdash/ vDash

<R2>:

  1. \rbrace\ \lbrace$
  2. \rbrack\ \lbrack$
  3. \rceil\ \lceil$
  4. \rfloor\ \lfloor$
  5. \rgroup\ \lgroup$
  6. \rightleftarrows\ \leftrightarrows\ \rightleftharpoons\ \leftrightharpoons$
  7. \rmoustache\ \lmoustache$
  8. \rightrightarrows\ \leftleftarrows$
  9. \rightsquigarrow$
  10. \vdash\ \Vdash\ \vDash$

<R2>:

  1. $\rbrace\ \lbrace$
  2. $\rbrack\ \lbrack$
  3. $\rceil\ \lceil$
  4. $\rfloor\ \lfloor$
  5. $\rgroup\ \lgroup$
  6. $\rightleftarrows\ \leftrightarrows\ \rightleftharpoons\ \leftrightharpoons$
  7. $\rmoustache\ \lmoustache$
  8. $\rightrightarrows\ \leftleftarrows$
  9. $\rightsquigarrow$
  10. $\vdash\ \Vdash\ \vDash$

>Top <R3>:

  1. rightthreetimes/ leftthreetimes
  2. risingdotseq
  3. rtimes/ltimes
  4. Roman math font
  5. Roman number (Ⅰ-Ⅴ)
  6. Roman number (Ⅵ-Ⅹ)
  7. rvert/rVert

<R3>:

  1. \rightthreetimes\ \leftthreetimes$
  2. \risingdotseq\ \fallingdotseq\ \approx\ \cong$
  3. \rtimes\ \ltimes$
  4. \mathrm{math}$
  5. I\ \
    I\hspace{-.1em}I\ \
    I\hspace{-.1em}I\hspace{-.1em}I\ \
    I\hspace{-.1em}V\ \
    V$
  6. V\hspace{-.1em}I\ \
    V\hspace{-.1em}I\hspace{-.1em}I\ \ V\hspace{-.1em}I\hspace{-.1em}I\hspace{-.1em}I\ \
    I\hspace{-.1em}X\ \
    X$
  7. \rvert\ \rVert$

<R3>:

  1. $\rightthreetimes\ \leftthreetimes$
  2. $\risingdotseq\ \fallingdotseq\ \approx\ \cong$
  3. $\rtimes\ \ltimes$
  4. $\mathrm{math}$
  5. $I\ \
    I\hspace{-.1em}I\ \
    I\hspace{-.1em}I\hspace{-.1em}I\ \
    I\hspace{-.1em}V\ \
    V$
  6. $V\hspace{-.1em}I\ \
    V\hspace{-.1em}I\hspace{-.1em}I\ \ V\hspace{-.1em}I\hspace{-.1em}I\hspace{-.1em}I\ \
    I\hspace{-.1em}X\ \
    X$
  7. $\rvert\ \rVert$

>Top <S1>:

  1. Sans serif math font
  2. Script math font
  3. Script size
  4. Script small l
  5. secant
  6. section
  7. set-1
  8. set-2
  9. set-3
  10. set-4
  11. set minus
  12. sharp/flat
  13. shortmid
  14. shortparallel
  15. sigma/Sigma/varsigma
  16. similar to
  17. sine/cosine
  18. hyperbolic sine

<S1>:

  1. \mathsf{math}$
  2. \mathscr{math}$
  3. \scriptsize{text}$
  4. \ell$
  5. \sec$
  6. \S\ \cdot\ \bullet\ \circ\ \diamond\ \ast\ \star\ \wr\ \prime$
  7. a\in A\ A\ni a\ \notin\
  8. \subset\ \supset\ \subseteq\
    \supseteq
  9. \nsubseteq\ \nsupseteq\ \subsetneq\ \supsetneq\
  10. \cap\ \cup\ \emptyset\ \backslash\ \A^c\ \overline{A}$
  11. \setminus\ \# \ \$ \ \% \ \& \ \_ \verb|\| \ \verb|^|\
    \verb|~| \ \verb+|+ \ \S$
  12. \sharp\ \flat$
  13. \shortmid$
  14. \shortparallel$
  15. \sigma\ \Sigma\ \varsigma\ \varSigma$
  16. \sim$
  17. \sin{\alpha}\ \sin^2{\alpha}\ \cos{\beta}\ \cos^3{\beta}$
  18. \sinh\ \sinh^2{\alpha}$

<S1>:

  1. $\mathsf{math}$
  2. $\mathscr{math}$
  3. $\scriptsize{text}$
  4. $\ell$
  5. $\sec$
  6. $\S\ \cdot\ \bullet\ \circ\ \diamond\ \ast\ \star\ \wr\ \prime$
  7. $a\in A\ A\ni a\ \notin$
  8. $\subset\ \supset\ \subseteq\ \supseteq$
  9. $\nsubseteq\ \nsupseteq\ \subsetneq\ \supsetneq$
  10. $\cap\ \cup\ \emptyset\ \backslash\ A^c\ \overline{A}$
  11. $\setminus\ \# \ \$ \ \% \ \& \ \_ \verb|\| \ \verb|^|\
    \verb|~| \ \verb+|+ \ \S $
  12. $\sharp\ \flat$
  13. $\shortmid$
  14. $\shortparallel$
  15. $\sigma\ \Sigma\ \varsigma\ \varSigma$
  16. $\sim$
  17. $\sin{\alpha}\ \sin^2{\alpha}\ \cos{\beta}\
    \cos^3{\beta}$
  18. $\sinh\ \sinh^2{\alpha}$

>Top <S2>:

  1. Slanted font
  2. small frown
  3. small integral
  4. small size
  5. small smile
  6. smash
  7. smile
  8. space
  9. hspace
  10. spade suit/club/heart/diamond

<S2>:

  1. \sf{text}$
  2. \smallfrown$
  3. \smallint$
  4. \small{text}$
  5. \smallsmile$
  6. \smash{text}$
  7. \smile\ \frown\ \asymp\ \sim\ \simeq\ \nsim$
  8. a\!b\ \ a\,b\ \ a\>b
    a\:b\ \ a\;b\ \ a{}b
    a\!\!b\ \ a\:\:b\ \ a\;\;b
    A\quad B\ \ A\qquad B\\
    y\quad=ax\qquad+b$
  9. a \hspace{50pt}b \hspace{1cm}c$
  10. \spadesuit\ \clubsuit\ \heartsuit\ \diamondsuit\ \diamond$

<S2>:

  1. $\sf{text}$
  2. $\smallfrown$
  3. $\smallint$
  4. $\small{text}$
  5. $\smallsmile$
  6. $\smash{text}$
  7. $\smile\ \frown\ \asymp\ \sim\ \simeq\ \nsim$
  8. $a\!b\ \ a\,b\ \ a\>b$
    $a\:b\ \ a\;b\ \ a{}b$
    $a\!\!b\ \ a\:\:b\ \ a\;\;b$
    $A\quad B\ \ A\qquad B$
  9. $y\quad=ax\qquad+b$
  10. $a \hspace{50pt}b \hspace{1cm}c$
  11. $\spadesuit\ \clubsuit\ \heartsuit\ \diamondsuit\ \diamond$

>Top <S3>:

  1. square
  2. square
  3. るーと
  4. square root (sample1)
  5. square root (sample2)
  6. stacked relation
  7. square root - smash
  8. stackrel{upper}{lower}
  9. star/bigstar
  10. subsetset/superset-1
  11. subsetset/superset-2
  12. sqsubset/sqsupset
  13. sub_text

<S3>:

  1. \sphericalangle$
  2. \square$
  3. \sqrt{}
  4. \sqrt{expression}\ \sqrt[n]{expression}$
  5. x^{\frac{a}{b}}=\sqrt[b]{x^a}$
  6. \stackrel{upper}{lower}$
  7. \sqrt{x}+\sqrt{y}\\ \sqrt{x}+\sqrt{\smash[b]{y}}$
  8. \stackrel{upper}{lower}$
  9. \star\ \bigstar$
  10. \subset\ \Subset\ \subseteq\ \subseteqq\ \subsetneq\ \subsetneqq$
  11. \supset\ \Supset\ \supseteq\ \supseteqq\ \supsetneq\ \supsetneqq$
  12. \sqsubset\ \sqsupset\ \sqsubseteq\ \sqsupseteq$
  13. A_{\text{max}}=\text{some constant}$

<S3>

  1. $\sphericalangle$
  2. $\square$
  3. $\sqrt{*}$
  4. $\sqrt{expression}\ \sqrt[n]{expression}$
  5. $x^{\frac{a}{b}}=\sqrt[b]{x^a}$
  6. $\sqrt{a+b+2\sqrt{ab}}=\sqrt{a+b}$
  7. $\sqrt{x}+\sqrt{y}\\ \sqrt{x}+\sqrt{\smash[b]{y}}$
  8. $\stackrel{upper}{lower}$
  9. $\star\ \bigstar$
  10. $\subset\ \Subset\ \subseteq\ \subseteqq\ \subsetneq\ \subsetneqq$
  11. $\supset\ \Supset\ \supseteq\ \supseteqq\ \supsetneq\ \supsetneqq$
  12. $\sqsubset\ \sqsupset\ \sqsubseteq\ \sqsupseteq$
  13. $A_{\text{max}}=\text{some constant}$

>Top <S4>:

  1. varsubsetneq\ \varsubsetneqq\ \varsupsetneq\ \varsupsetneqq/
  2. succapprox/ succurlyeq/ succeq/ succnapprox/ succneqq/ succnsim/ succsim
  3. prec/preceq
  4. さむ
  5. sum/ sum (snippet)
  6. sum-1
  7. sum-2
  8. sum-2
  9. sum-3
  10. supremum
  11. surd

<S4>:

  1. \varsubsetneq\ \varsubsetneqq\ \varsupsetneq\ \varsupsetneqq$
  2. \succ\ \succapprox\ \succcurlyeq\ \succeq\ \succnapprox\ \succneqq\ \succnsim\ \succsim$
  3. \prec\ \precapprox\ \preccurlyeq\ \preceq\ \precnapprox\ \precneqq\ \precnsim\ \precsim$
  4. \displaystyle\sum_{n=1}^{\infty}
    \ \\displaystyle\prod_{n=1}^n
  5. \sum\ \sum_{lower}^{upper}expression$
  6. \lim_{x \to \infty}f(x)$
  7. \displaystyle\lim_{x \to \infty}f(x)$
  8. \displaystyle \sum_{k=1}^5 a_k=a_1+a_2+a_3+a_4+a_5 $
  9. \ begin{eqnarray}
    F(x,y)=\sum_{i=-1}^hA_i(x,y)G_i(x,y)
    \ end{eqnarray}$
  10. \sup$
  11. \surd$

<S4>:

  1. $\varsubsetneq\ \varsubsetneqq\ \varsupsetneq\ \varsupsetneqq$
  2. $\succ\ \succapprox\ \succcurlyeq\ \succeq\ \succnapprox\ \succneqq\ \succnsim\ \succsim$
  3. $\prec\ \precapprox\ \preccurlyeq\ \preceq\ \precnapprox\ \precneqq\ \precnsim\ \precsim$
  4. $\displaystyle\sum_{n=1}^{\infty}\ \
    \displaystyle\prod_{n=1}^n$
  5. $\sum\ \sum_{lower}^{upper}expression$
  6. $\lim_{x \to \infty}f(x)$
  7. $\displaystyle\lim_{x \to \infty}f(x)$
  8. $\displaystyle \sum_{k=1}^5 a_k=a_1+a_2+a_3+a_4+a_5 $
  9. $\begin{eqnarray}
    F(x,y)=\sum_{i=-1}^hA_i(x,y)G_i(x,y)
    \end{eqnarray}$
  10. $\sup$
  11. $\surd$

>Top <T1>:

  1. tanent/hyperbolic tangent
  2. tau
  3. binominal coeeficient (text syle)
  4. TeX/LaTeX
  5. Text/ Bold text font/ Italic text font/ Roman text font
  6. therefore ゆえに
  7. text font
  8. text size
  9. theta/Theta/vartheta
  10. thickapprox/thicksim
  11. tilde
  12. かけ
  13. times/div/equiv/neq
  14. tiny size

<T1>:

  1. \tan\ \tanh$
  2. \tau$
  3. \binom{m}{n}\ \tbinom{upper}{lower}\ \dbinom{m}{n}$
  4. \TeX\ \LaTeX$
  5. \text{text}\ \textbf{text}\ \textit{text}\ \textrm{text}$
  6. \therefore\ \because$
  7. $\rm{roman}\ \bf{bt}\ \it{italc}\\
    \sf{sans serif}\ \tt{typewriter}\\
    \textbf{textbf}\\
    \mathsf{MATHsf}\\
    \mathit{MATHitalic}\\
    \mathbb{MATHblackboard}\\
    \mathcal{MATHcalligraphy}\\
    \mathscr{MATHscript}\\
    \mathfrak{MATHfraktur 0123}\\
    \underline{science}\\
    \textit{aha!}
  8. \tiny{A}\ \scriptsize{A}\ \large{A}\ \Large{A}\ \LARGE{A}\ \huge{A}\ \Huge{A}
  9. \theta\ \Theta\ \vartheta\ \varTheta$
  10. \thickapprox\ \thicksim$
  11. \tilde{expression}$
  12. \times
  13. \times\ \div\ \equiv\ \neq
  14. \tiny{text}$

<T1>:

  1. $\tan\ \tanh$
  2. $\tau$
  3. $ \binom{m}{n}\ \tbinom{upper}{lower}\ \dbinom{m}{n}$
  4. $\TeX\ \LaTeX$
  5. $\text{text}\ \textbf{text}\ \textit{text}\ \textrm{text}$
  6. $\therefore\ \because$
  7. $\rm{roman}\ \bf{bt}\ \it{it}\\
    \sf{sans serif}\ \tt{typewriter}\\
    \textbf{textbf}\\
    \mathsf{MATHsf}\\
    \mathit{MATHitalic}\\
    \mathbb{MATHblackboard}\\
    \mathcal{MATHcalligraphy}\\
    \mathscr{MATHscript}\\
    \mathfrak{MATHfraktur 0123}\\
    \underline{science}\\
    \textit{aha!}$
  8. $\tiny{A}\ \scriptsize{A}\ \large{A}\ \Large{A}\ \LARGE{A}\ \huge{A}\ \Huge{A}$
  9. $\theta\ \Theta\ \vartheta\ \varTheta$
  10. $\thickapprox\ \thicksim$
  11. $\tilde{expression}$
  12. $\times$
  13. $\times\ \div\ \equiv\ \neq$
  14. $\tiny{Remark:}$

>Top <T2>:

  1. to
  2. top
  3. triangle (white)
  4. triangle (equal)
  5. triangle (black)
  6. triangle (var)
  7. triangle (big)
  8. trigonometric function
  9. trigonometric/hypebolic
  10. lhd/rhd/unlhd/unrhd
  11. triple dot
  12. triple integral
  13. twoheadleftarrow/ twoheadrightarrow
  14. typewriter font
  15. Typewriter math font

<T2>:

  1. \to$
  2. \top\ \bot\ \perp$
  3. \triangle\ \triangledown\ \triangleright\ \triangleleft\ \bowtie$
  4. \triangleq\ \trianglerighteq\ \trianglelefteq$
  5. \blacktriangle\ \blacktriangledown\ \blacktriangleright\ \blacktriangleleft$
  6. \vartriangle\ \vartriangleright\ \vartriangleleft$
  7. \bigtriangleup\ \bigtriangledown\ \triangleright\ \triangleleft$
  8. \ begin{eqnarray}
    \sin x\\
    \cos x\\
    \tan x
    \ end{eqnarray}$
  9. \sin x \ \cos x\ \tan x\
    \csc x\ \sec x\ \cot x\ 
    \sinh x\ \cosh x\ \tanh x\
    \csch x\ \sech x\ \coth x\ 
    \arcsin x\ \arccos x\ \arctan x\ \arccot x
  10. \lhd\ \rhd\ \unlhd\ \unrhd$
  11. \dddot{expression}$
  12. \iiint$
  13. \twoheadleftarrow\ \twoheadrightarrow$
  14. \tt{text}$
  15. \mathtt{math}$

<T2>:

  1. $\to$
  2. $\top\ \bot\ \perp$
  3. $\triangle\ \triangledown\ \triangleright\ \triangleleft\ \bowtie\ \ltimes$
  4. $\triangleq\ \trianglerighteq\ \trianglelefteq$
  5. $\blacktriangle\ \blacktriangledown\ \blacktriangleright\ \blacktriangleleft$
  6. $\vartriangle\ \vartriangleright\ \vartriangleleft$
  7. $\bigtriangleup\ \bigtriangledown\ \triangleright\ \triangleleft$
  8. $\begin{eqnarray}
    \sin x\\
    \cos x\\
    \tan x
    \end{eqnarray}$
  9. $\sin x \ \cos x\ \tan x$
    $\csc x\ \sec x\ \cot x$
    $\sinh x\ \cosh x\ \tanh x$
    $\csch x\ \sech x\ \coth x$ 
    $\arcsin x\ \arccos x\ \arctan x\ \arccot x$
  10. $\lhd\ \rhd\ \unlhd\ \unrhd$
  11. $\dddot{expression}$
  12. $\iiint$
  13. $\twoheadleftarrow\ \twoheadrightarrow$
  14. $\tt{text}$
  15. $\mathtt{math}$

>Top <U1>:

  1. underbrace
  2. underline
  3. union plus
  4. unlhd/unrhd
  5. up arrow/down arrow
  6. up down arrow/ up down arrow (double)
  7. upharpoonleft/ upharpoonright
  8. uplus/oplus/
    ominus/otimes
  9. upper left corner/ upper right corner
  10. upsilon/Upsilon
  11. upuparrows/ downdownarrows

<U>:

  1. \underbrace{expression}_{under}$
  2. \underline{x+y}\\ \underline{x}+\underline{y}$
  3. \uplus\ \biguplus$
  4. \unlhd\ \unrhd$
  5. \uparrow\ \Uparrow$
  6. \updownarrow\ \Updownarrow$
  7. \upharpoonleft\ \upharpoonright$
  8. \uplus\ \oplus\ \ominus\otimes$
  9. \ulcorner\ \urcorner$
  10. \upsilon\ \Upsilon\ \varUpsilon$
  11. \upuparrows\ \downdownarrows$

<U1>:

  1. $\underbrace{expression}_{under}$
  2. $\underline{x+y}\\ \underline{x}+\underline{y}$
  3. $\uplus\ \biguplus$
  4. $\unlhd\ \unrhd$
  5. $\uparrow\ \Uparrow$
  6. $\updownarrow\ \Updownarrow$
  7. $\upharpoonleft\ \upharpoonright$
  8. $\uplus\ \oplus\ \ominus\otimes$
  9. $\ulcorner\ \urcorner$
  10. $\upsilon\ \Upsilon\ \varUpsilon$
  11. $\upuparrows\ \downdownarrows$

>Top <U2>:

  1. unit-1
  2. unit-2
  3. unit-3

<U2>:

  1. \mathrm{(m/s)}
  2. 0^\circ\rm{C}\ \mathrm{\mathring{A}}
  3. G_\mathrm{N}=6.67\times 10^{-11}\, [\text{N$\cdot$m$^2\cdot$kg$^{-2}$}]

<U2>:

  1. $\mathrm{(m/s)}$
  2. $0^\circ\rm{C}\ \mathrm{\mathring{A}}$
  3. $G_\mathrm{N}=6.67\times 10^{-11}\, [\text{N$\cdot$m$^2\cdot$kg$^{-2}$}]$

>Top <V>:

  1. verbatim
  2. vertical dots
  3. vector-1
  4. vector-2
  5. vector-3
  6. Vee/veebar
  7. vertical line/ vertical line (double)
  8. Vvdash

<V>:

  1. \#\ \$\ \%\ \&\ \_ \{\ \} \verb|\|\ \verb|^|
  2. \vdots\ \ddots$
  3. \vec{expression}\ \overline{a}\ \overrightarrow{ab}\ \ \vec{A}\ \|x\|\ \vec{a}\perp\vec{b}\ \vec{a}\parallel\vec{b}
  4. ^t\bf{A}\ \bf{A}^{\mathrm{T}}
  5. \vec{a}\cdot\vec{b}\ \bf{A}\times\bf{B}
  6. \bf{A}=\left(
    \begin {array}{c}
    a_1\\a_2\\
    \vdots\\a_n
    \end {array}
    \right)
  7. \vee\ \bigvee\ \veebar\ \wedge$
  8. \vert\ \Vert$
  9. \Vvdash$

<V>:

  1. $\#\ \$\ \%\ \&\ \_ \{\ \} \verb|\|\ \verb|^|$
  2. $\vdots\ \ddots$
  3. $\vec{expression}\ \overline{a}\ \overrightarrow{ab}\ \ \vec{A}\ \|x\|\ \vec{a}\perp\vec{b}\ \vec{a}\parallel\vec{b}$
  4. $^t\bf{A}\ \bf{A}^{\mathrm{T}}$
  5. $\vec{a}\cdot\vec{b}\ \bf{A}\times\bf{B}$
  6. $\bf{A}=\left(
    \begin{array}{c}
    a_1\\a_2\\
    \vdots\\a_n
    \end{array}
    \right)$
  7. $\vee\ \bigvee\ \veebar\ \wedge$
  8. $\vert\ \Vert$
  9. $\Vvdash$

>Top <W>:

  1. wedge
  2. bar wedge
  3. weierstrass elliptic
  4. wide hat/ wide tilde
  5. wreath product

<W>:

  1. \wedge\ \vee\ \bigwedge\ \bigvee$
  2. \barwedge\ \veebar\ \doublebarwedge$
  3. \wp$
  4. \widehat{text}\ \widetilde{text}$
  5. \wr$

<W>:

  1. $\wedge\ \vee\ \bigwedge\ \bigvee\ \curlywedge\ \curlyvee$
  2. $\barwedge\ \veebar\ \doublebarwedge$
  3. $\wp$
  4. $\widehat{text}\ \widetilde{text}$
  5. $\wr$

>Top <X>:

  1. xi/Xi

<X>:

  1. \xi\ \Xi\ \varXi$

<X>:

  1. $\xi\ \Xi\ \varXi$

>Top <Y>:

  1. yen

<Y>:

  1. \yen$

<Y>:

  1. $\yen$

>Top <Z>:

  1. zeta

<Z>:

  1. \zeta$

<Z>:

  1. $\zeta$
Pinyin
I
Comment
  • a
  • a

| Top | Home | Article | Bookshelf | Keyword | Author | Oxymoron |