>LaTex
>公式集
Tips for Maxima command
Category: ICT
Published: 2021
#2121a
compiled by Kanzo Kobayashi
up 21z31
Index
Key
; ; if文; ; 関数の定義 ; 行列式; 極限値; 式の展開; 数列の和; 数列の積; 三角関数; 多項式; テイラー展開; ; 部分分数; ; ; 連立方程式; ; ; ; ;
Key
Maxima
Remarks
>Top <A>:
-
<A>:
<A>:
>Top <B>:
<B>:
<B>:
>Top <C>:
<C>:
<C>:
>Top <D>:
- Differentiate 微分
- Definition of function 関数定義
<D>:
- diff(a*x^3+b*x^2+c*x+d,x,1);→$3a^2+2bx+c$
- diff((x^2+a^2)/(x^2-a^2),x,1);→$\frac{2x}{x^2-a^2}-\frac{2x(x^2+a^2)}{(x^2-a^2)^2}$
- diff(sqrt(x^2+1),x);→$\frac{x}{\sqrt{x^2+1}}$
- diff((exp(3*x)+exp(-2*x))/2,x);→$\frac{3e^{3x}-2e^{-2x}}{2}$
- diff(2^x,x);→$2^x\log 2$
- diff((x+1)/(x+2)^(4/3),x);→
$\frac{1}{(x+2)^{\frac{4}{3}}}-\frac{4(x+1)}{3(x+2)^{\frac{7}{3}}}$
- diff(log(x+sqrt(x^2+1)),x);
ratexpand(%); →$\frac{1}{\sqrt{x^2+1}}$
- diff(sin(x)^2,x);→$2\cos x\sin x$
trigreduce(%); →$\sin 2x$
- diff(atan(x),x);→\frac{1}{x^2+1}
- f(x):=x^2+2*x+1; →$f(x):=x^2+2x+1$
factor(f(x)); →$(x+1)^2$
<D>:
>Top <E>:
- expand 式の展開
<E>:
- expand((x+y)^4); →$y^4+4xy^3+6x^2y^2+4x^3y+x^4$
factor(%); →$(y+x)^4$
<E>:
>Top <F>:
<F>:
<F>:
>Top <G>:
<G>:
<G>:
>Top <H>:
- Hyperbolic function
<H>:
Hyperbolic Function
Trigonometric Funtion
$\sinh x=\frac{e^x-e^{-x}}{2}$
$\sin x=\frac{e^{ix}-e^{-ix}}{2i}$
$\cosh x=\frac{e^x+e^{-x}}{2}$
$\cos x=\frac{e^{ix}+e^{-ix}}{2}$
$\tanh x=\frac{\sinh x}{\cosh x}$
$\tan x=\frac{\sin x}{\cos x}$
$\sinh(-x)=-\sinh x$
$\sin(-x)=-\sin x$
$\cosh(-x)=\cosh x$
$\cos(-x)=\cos x$
$\tanh(-x)=-\tanh x$
$\tan(-x)=-\tan x$
$\cosh^2x-\sinh^2x=1$
$\cos^2x+\sin^2x=1$
$1-\tanh^2x=\frac{1}{\cosh^2x}$
$1+\tan^2x=\frac{1}{\cos^2x}$
$e^x=\cosh x+\sinh x$
$e^{ix}=\cos x+i\sin x$
$\sinh(\alpha±\beta)=\sinh\alpha\cosh\beta
±\cosh\alpha\sinh\beta$
$\sin(\alpha±\beta)=\sin\alpha\cos\beta
±\cos\alpha\sin\beta$
$\cosh(\alpha±\beta)=\cosh\alpha\cosh\beta
±\sinh\alpha\sinh\beta$
$\cosh(\alpha±\beta)=\cosh\alpha\cosh\beta
\mp\sinh\alpha\sinh\beta$
$\tanh(\alpha±\beta)=\frac{\tanh\alpha±\tanh\beta}
{1\mp\tanh\alpha\tanh\beta}$
$\tan(\alpha±\beta)=\frac{\tan\alpha±\tan\beta}
{1\mp\tan\alpha\tan\beta}$
$\lim_{x\to 0}\frac{\sinh x}{x}=1$
$\lim_{x\to 0}\frac{\sin x}{x}=1$
$\lim_{x\to 0}\frac{\cosh x-1}{x}=0$
$\lim_{x\to 0}\frac{\cos x-1}{x}=0$
$\lim_{x\to 0}\frac{\tanh x}{x}=1$
$\lim_{x\to 0}\frac{\tan x}{x}=1$
<H>:
>Top <I >:
- if, then, else文
<I>:
- s(x):=if x<0 then 0 else 1;
- h(x):=if x<0 then 0 elseif x=0 then 1/2 else 1;
<I>:
- If 条件式1 then 処理1 elseif 条件式2 then 処理2 ... elseif 条件式n then 処理n else 処理0
>Top <J>:
<J>:
<J>:
>Top <K>:
<K>:
<K>:
>Top <L>:
- Limit
<L>:
- limit((1+x)^(1/x),x,0);→e
<L>:
- $\displaystyle\lim_{\to +0}(1+x)^{\frac{1}{x}}
→ e$
>Top <M>:
- Matrix 行列式
<M>:
- A: matrix([1,2],[3,4]);
- B: matrix([a,b],[c,d]);
C: A+B;
D: A.B;
E: 3*B;
F: A^^2;
- kill (all);
C: matrix([a,b,c],[d,e,f]);
transpose(C);
- A: matrix([1,2,3],[4,5,6],[7,8,9]);
echelon(A);
rank(A);
- B: matrix([1,2,3],[4,5,6],[7,8,0]);
invert(B);
- C: matrix([a,b],[c,d]);
invert(C);
- E: matrix([a,b,c],[d,e,f],[g,h,i]);
row[E,1];
<M>:
- 行列式
- 加算
乗算
スカラー倍
冪乗
- 転置行列
- 階段行列 (echelon)
- 逆関数
- 逆関数
- 行の取り出し
>Top <N>:
<N>:
<N>:
>Top <O>:
<O>:
<O>:
>Top <P>:
- Partial fraction 部分分数展開 ・
式の簡略化
- Polynominals 多項式
- product
<P>:
- partfrac(1/(x^2*(x^2+1)), x);→$\frac{1}{x^2}-\frac{1}{x^2+1}$
- partfrac(x/(x+1),x);→$1-\frac{1}{x+1}$
ratsimp(%);→\frac{x}{x+1}
- poly:x^2-x-12;
- solutions:solve(poly=0,x);
- map(lambda([eq],lhs(eq)-rhs(eq)),solutions);
- product(sin(k*%pi/4),k,1,3); →$\frac{1}{2}$
<P>:
- $\frac{1}{x^2(x^2+1)}$
- x^2-x-12
- [x=-3, x=4]
- [x+3, x-4]
- $\Pi$
>Top <Q>:
- Quotation
<Q>:
- solve([x+y=1, x^2+y^2=2], [x,y]);→$[[x=\frac{1-\sqrt{3}}{2}, y=\frac{1+\sqrt{3}}{2}], [x=\frac{1+\sqrt{3}}{2}, y=\frac{1-\sqrt{3}}{2}]]$
<Q>:
- $\cases{x+y=1\\x^2+y^2=2}$
>Top <R>:
<R>:
<R>:
>Top <S>:
- Simultaneous equations
- solve
- sum; nusum
<S>:
- eq1: [x+2*y+3*z=4, 5*x+6*y+7*z=8, 9*x+10*y+11z=0];
- solve(x^3-2*x+1=0, x); →$[x=-\frac{\sqrt{5}+1}{2}, x=\frac{\sqrt{5}-1}{2}, x=1]$
- solve(a*x^2+b*x+c=0, x);→$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$
- solve([x^2+y^2=10,y=2*x-5],[x,y]);
→[[x=1,y=-3],[x=3,y=1]]
- solve(x^2+1=0); →[x=-%i, x=%i]
- sum(2*k+1, k, 1, n),simpsum; →n2+2n
- nusum(k,k,1,n); →$\frac{n(n+1)}{2}$
- nusum(k^2,k,1,n);→$\frac{n(n+1)(2n+1)}{6}$
- nusum(a*r^(k-1),k,1,n); →$\frac{a(r^n-1)}{r-1}$
- sum(1/x^2,x,1,inf), simpsum=true; →$\frac{\pi^2}{6}$
- a
<S>:
- $\cases{x+2y+3z=4\\5x+6y+7z=8\\9x+10y+11z=0}$
- $x^3-2x+1=0$
- $ax^2+bx+c=0$
- $\displaystyle\sum_{k=1}^{n}(2k+1)$
- $\displaystyle\sum_{k=1}^{n}k$
- $\displaystyle\sum_{k=1}^{n}k^2$
- $\displaystyle\sum_{k=1}^{n}ar^{k-1}$
- $\displaystyle\sum_{k=1}^{\infty}\frac{1}{k^2}$
>Top <T>:
- Tayloer Sereies
- Trigonometric function
<T>:
- taylor(%e^x,x,0,5); → $\frac{1}{120}x^5+\frac{1}{24}x^4+
\frac{1}{6}x^3+\frac{1}{2}x^2+x+1$
- taylor(sin(x), x, 0, 5);→
$\frac{1}{120}x^5-\frac{1}{6}x^3+x+\cdots$
- taylor(cos(x), x, 0, 5);→
$\frac{1}{24}x^4−\frac{1}{2}x^2+1$
- taylor(log(1+x), x, 0, 3);→
$\frac{1}{5}x^5−\frac{1}{4}x^4+\frac{1}{3}x^3
-\frac{1}{2}x^2+x+\cdots$
- trigexpand(sin(%alpha+%beta)); →$\cos\alpha\sin\beta+\sin\alpha\cos\beta$
- sin(2*%alpha);→$2\cos\alpha\sin\alpha$
- cos(2*%alpha);→$\cos^2\alpha-\sin^2\alpha$
- tan(2*%alpha);→$\frac{2\tan\alpha}{1-\tan^2\alpha}$
- sin(3*%alpha);→$3\cos^2\alpha\sin\alpha-\sin^3\alpha$
- cos(3*%alpha);→$\cos^2\alpha-\sin^2\alpha$
- tan(3*%alpha);→$\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}$
<T>:
- $e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+
\frac{1}{4!}x^4+\frac{1}{5!}x^5+\cdots$
- $\sin x=x-\frac{1}{3!}x^3
+\frac{1}{5!}x^5-\frac{1}{7!}x^7
+\cdotss
$
- $\cos x=1-\frac{1}{2!}x^2
+\frac{1}{4!}x^4-\frac{1}{6!}x^6
+\cdots
$
- Trigonometric:
- $2\sin\alpha\cos\alpha$
- a
- a
- $3\sin\alpha-4\sin^3\alpha$
- $4\cos^3\alpha-3\cos\alpha$
- a
>Top <U>:
<U>:
<U>:
>Top <V>:
<V>:
<V>:
>Top <W>:
<W>:
<W>:
>Top <X>:
<X>:
<X>:
>Top <Y>:
<Y>:
<Y>:
>Top <Z>:
<Z>:
<Z>:
Key
Maxima
Remarks
Pinyin
Comment
- For a long time, I used paper, pcncils, rulers and a compass to study mathematics. This time my computer with Maxima software will participate in them.
- 今まで長い間、紙と鉛筆、定規とコンパスを使って数学を勉強してきた。今回はMaximaソフトを使ってコンピュータが参加することになる。
>LaTex |
Tips for Maxima command
|
Category: ICT |
compiled by Kanzo Kobayashi |
up 21z31 |
Index |
|||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Key |
; ; if文; ; 関数の定義 ; 行列式; 極限値; 式の展開; 数列の和; 数列の積; 三角関数; 多項式; テイラー展開; ; 部分分数; ; ; 連立方程式; ; ; ; ; |
Key |
Maxima |
Remarks |
>Top <A>: |
<A>: |
<A>: |
>Top <B>: |
<B>: |
<B>: |
>Top <C>: |
<C>: |
<C>: |
>Top <D>:
|
<D>:
|
<D>: |
>Top <E>:
|
<E>:
|
<E>: |
>Top <F>: |
<F>: |
<F>: |
>Top <G>: |
<G>: |
<G>: |
>Top <H>:
|
<H>:
<H>: |
>Top <I >:
|
<I>:
|
<I>:
|
>Top <J>: |
<J>: |
<J>: |
>Top <K>: |
<K>: |
<K>: |
>Top <L>:
|
<L>:
|
<L>:
|
>Top <M>:
|
<M>:
|
<M>:
|
>Top <N>: |
<N>: |
<N>: |
>Top <O>: |
<O>: |
<O>: |
>Top <P>:
|
<P>:
|
<P>:
|
>Top <Q>:
|
<Q>:
|
<Q>:
|
>Top <R>: |
<R>: |
<R>: |
>Top <S>:
|
<S>:
|
<S>:
|
>Top <T>:
|
<T>:
|
<T>:
|
>Top <U>: |
<U>: |
<U>: |
>Top <V>: |
<V>: |
<V>: |
>Top <W>: |
<W>: |
<W>: |
>Top <X>: |
<X>: |
<X>: |
>Top <Y>: |
<Y>: |
<Y>: |
>Top <Z>: |
<Z>: |
<Z>: |
Key |
Maxima |
Remarks |
Pinyin |
||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Comment |
|
|