| Bottom | Home | Article | Bookshelf | Keyword | Author | Oxymoron |

nuclearpostf

Nuclear Power in a Post-Fukushima World -4

Category: ECO
Published: 2011
#1113b

Mycle Schneider, Antony Froggatt, & Steve Tohmas

up 11y15

Title

Nuclear Powr in a Post-Fukushima World -4

福島後の世界の原子力-4

Index
Tag
Gen III+; $1000/kW x6; US Nuclear Power 2010 Program; 2 stage design certification; EPR by AREBA-NP, WH AP1000; GE ABWR; CE System80+PWR
Why?
  • Nuclear issue is not an issue of one electric company, nor energy industry, but also major issues related to the whole economic, political, social, technological and human way of life; in addition not related to the limited areas in Japan but whole global village; furthermore not related to our generation but several generations including our grand-grand-grand-grand-grand children.
  • 原子力問題は1つの電力会社でもエネルギー産業の問題でもなく、すべての経済、政治、社会、技術、人々の生き方に関係する問題である。さらに日本の限られた地域に関係するだけでなく世界中に関係する。しかも我々の世代だけでなく数世代に亘って、我々の曾曾曾曾曾孫まで影響する問題なのだ。
English original
Japanese (abridge translation)
>Top

5. Nuclear Economics (1):

  • Nuclear Economics:
    This chapter focuses on the key factors that determine the cost of power from a nuclear power plant, both from the corporate point of view and from the wider societal point. It identifies factors that carry little weight in conventional project appraisal but which from a societal point of view demand serious examination.

5. 原子力の経済 (1):

  • 原子力の経済:
  • 本章では、企業の視点さらには社会的な面から原発の経済性に着目する。特に従来のプロジェクト評価を越えて社会的な観点から評価する。
  • Reactor Licensing and Economics
  • When the Generation III+ reactor designs began to emerge roughly a decade ago, they promised to be simpler and safer—but still cheaper—than previous designs. This is because they were being designed from scratch and could respond to all the regulatory requirements of the day, rather than being modifications of existing designs. The common assumption was that nuclear plants could be built for $1,000 per kW. Current estimates, however, are six times that.
  • Because of their claimed advantages, it was assumed that the new designs would quickly satisfy regulatory requirements. When U.S. President George W. Bush launched his Nuclear Power 2010 program in 2002, the government expected that at least one unit of a Gen III+ design would be on line by 2010. Yet as of late 2010, none of the five Gen III+ designs being evaluated in the United States had been fully certified by the safety regulator, much less built and brought into service.
  • One lesson that the nuclear industry learned from the construction cost and time overruns of the 1980s and 90s was that plant designs should be completed before the start of construction. This would allow for more accurate cost estimates because the only design issues left to be resolved at a given site would be site-specific, such as the cooling and foundations. In both the United States and United Kingdom, design certification is now generally a two-stage process: in the first stage (1–2 years), the regulator reviews the design in principle to ensure that there are no "fatal" flaws, and in the second stage (up to several years), the vendor produces the detailed design of all major systems.
  • But this two-stage process has not been adopted everywhere. At the Olkiluoto and Flamanville EPR plants, Finland and France carried out only the first stage of approval and allowed construction to start before the design was complete. This appears to be one reason for the extensive delays and extra costs, as regulators have not been happy with AREVA NP's detailed design that was proposed in midconstruction. As U.S. and U.K. regulators have reviewed the EPR, issues have arisen that the French and Finnish regulators have had to take up. As a result, the two plants will be, to some extent, oneoffs, because design issues were raised too late in construction for the ideal solution to be implemented.
  • 原子炉の認可と経済性:
  • 次世代原子炉であるGeneration III+炉が設計されたのは約十年前で、従来の原子炉よりシンプルな設計と安全性とかつ安価であるとされてきた。これは既存の炉の改良ではなく、ゼロから設計され、当時のすべての審査要求に応えるものだった。この原発の標準価格は$1000/kW。但し現在はこの6倍になっている。
  • また有利な点として新設計は審査要求に迅速に応えるものとされた。米国のG.W.ブッシュ大統領は原子力2010年計画を2002に打ち上げ、米国政府はGen III+を1基2010年までに稼働させる予定であった。しかし2010年後半の段階でもGen III+5基のまだ米国で審査中であり、建設や稼働には遠く及ばなかった。
  • 原子力産業が1980-90年代の教訓として学んだことは、炉の設計は建設前に完了していることだった。これによって正確なコスト見積が分かる。後は現場特有の課題を解決する設計問題だけ、つまり冷却や基礎部分を残すだけだからである。米国、英国では設計審査は通常2段階で行われる。第1段階 (1-2年)では、規制当局は設計に致命的な欠陥がないかどうかであり、第2段階 (数年)ベンダーがすべての主要なシステムの詳細設計を行う点である。
  • この2段階審査方式はどこでも採用されてはいる訳ではない。OlkiluotoやFlamarvilleのERP炉の場合は、フィンランドと仏は第1段階の承認だけで、詳細設計なしで建設に着手した。規制当局はAREVA NPが詳細設計を建設途中で提出したことに満足しなかったことが、工期が大幅延長し大規模追加費用が発生した原因である。米英の規制当局はEPRをレビューし、仏とフィンランド規制当局が取り上げるべき問題点を指摘した。結果として設計問題は建設上あまりに遅く提出されたため、2基の原発は一回限りの認可となった。
  • United States
  • The U.S. Nuclear Regulatory Commission, which has carried out generic design assessments since 1992, gave 15-year approval in 1997–98 for three reactor designs: the Westinghouse AP600 (Advanced Passive), the General Electric (GE) ABWR (Advanced BWR) , and the Combustion Engineering System 80+ PWR. None of these has been offered for sale in the United States. By the time the AP600 received certification, it was not competitive, although a scaled-up version, the AP1000, was developed. The GE ABWR was built in Japan and there is now renewed U.S. interest in it, although certification expires in 2012 and the process of renewal has just started. The System 80+ design was licensed to South Korea as the APR1400 and is now under construction there; Korea also won an order to build four units in the UAE. The NRC is currently reviewing five other reactor designs: the Westinghouse AP1000, the GEHitachi ESBWR (Economic Simplified BWR), the updated ABWR, the EPR, and the Mitsubishi APWR. (See Table 2.)
  • 米国
  • 米国NRCは1992年以来包括的な設計評価を行い、1997-98に3つの原子炉について15年間の認可を与えた。WH製AP600、GE製ABWR、CE製 System80+PWRである。これらはいずれも米国ではまだ販売されていない。AP600が認可を得た時点では、容量の拡大版のAP1000が開発された。GE製ABWRは日本で建設され、米国も注目しているが、その認可は2012に切れるので認可更新が開催された。System 80+の方は、韓国向けにAPR1400として認可され現在韓国で建設中。韓国は4基をUAE向け受注した。NRCは現在他の5つの原子炉設計を審査中で、WH AP1000、GEHitach ESBWR、改良型ABWR、EPR、三菱製APWRである。
  • Table 2. Reactor Designs Currently Under Review in the United States
    Design Description/Status
    • AP1000:
      Received full regulatory approval in 2006, but roughly a year later Westinghouse (by then a subsidiary of Toshiba) submitted design revisions that are still undergoing NRC review. The most recent revision was in December 2010, and final approval was expected in late 2011, although the Fukushima accident could spell delays. Several U.S. projects are being actively pursued for AP1000s.
    • ESBWR:
      One of the first plants to begin consideration by the NRC, and generally seen as one of the most advanced of the Gen III+ designs. The NRC issued design approval in March 2011, and formal certification should take place in about a year, although the Fukushima accident may cause delay. Six U.S. utilities are interested in the ESBWR but none appear to be actively pursuing it, possibly because of cost. There is no interest outside the United States and it may be that, like the AP600, the design will achieve certification but will not be offered for sale.
    • EPR:
      In 2004, AREVA wrote the NRC requesting a review of the EPR that was expected to be completed in 2008. In 2010, the NRC pushed the review completion date to February 2013. A handful of U.S. utilities have expressed interest in building EPRs but only one project is being actively pursued, Calvert Cliffs (for one unit), which is now in serious doubt. Like the ESBWR and the AP600, the EPR may receive certification but not get any U.S. customers.
    • APWR
      The APWR has been under development since around 1980, and for the past decade an order has been said to be imminent in Japan (Tsuruga), although it still has not been placed. An updated version of the design has been submitted to the NRC, but a completion date for review is unlikely before 2013. One U.S. APWR project is being pursued but is still at an early stage.
    • ABWR:
      Cost problems with the ESBWR led some utilities to return to the ABWR, which dates to 1980 and won its first order in 1989. It is the only design being reviewed that is actually in service, albeit with earlier versions. Both GE-Hitachi and Toshiba offer the design. Toshiba has one customer with a project that is well advanced, and it expects NRC approval in principle by the end of 2011, with design certification a year later. The GE-Hitachi version has no U.S. customers, and the company supplied the design details for NRC review only in February 2011, so there is no completion date yet.
  • 表2: 現在米国で審査中の原子炉
    • AP1000:
      2006年に審査完了。但し1年後にWH (その後東芝の子会社に)が設計変更をしたので、NRCの審査は継続中。直近の変更は2010.12で、最終深謝は2011末に出る予定だが、福島事故がったのでしばらく遅れることがあり得る。米国の幾つかの案件はこのAP1000が対象。
    • ESBWR:
      NRCによる最初の審査が、このGen III+という最新の原子炉。NRCは2011.3に審査し、正式の認可は1年以内の見込みだが、福島事故の影響があり得る。米国の6電力がこの原子炉に関心を示しているが、コストの問題もありまだ未決定。米国以外では関心がない。AP600同様に設計認可は得たものの実際には販売されていない。
    • EPR:
      2004年に、AREVAはNRCに書簡を送り、EPRの審査が2008年中の完了を期待表明した。しかしNRCは審査完了を2013.2に延ばした。このEPR炉に関心を示しているのは米国のごく一部の電力だけで、Calvert Cliffs1基のみが推進中だが、現在行き詰まっている。ESBWRやAP600と同様にEPRもに認可は得られるだろうが、実際に米国の顧客は得られない。
    • APWR:
      APWRは1980年頃から開発されてきており、過去10年では日本の敦賀で、決定ではないが発注直前の状況である。設計の最新版はNRCに提出sれており、原発の完成時期は2013年より早くはならない。米国でのAPWR案件は1件購入予定だが、まだ初期段階である。
    • ABWR:
      ESBWRの価格に問題があるので、一部電力はABWRに回帰し、1989に1基受注した。GE/日立も東芝もこの設計を提案した。東芝は具体的な計画のある電力がいて、2011年末までNRCの基本的な承認、詳細設計は1年後でも、を期待している。GE-Hitachiは米国顧客がいないが、NRCには2011.2に審査のために詳細設計を提出した。従って完工日はまだない。
  • United Kingdom
  • The parallel process of generic review started in the United Kingdom in 2007. Of four designs originally submitted, two (the GE ESBWR and a Canadian heavy-water design) were quickly withdrawn, leaving the AP1000 and the EPR. The U.K. Nuclear Installations Inspectorate agreed to a completion date of July 2011 for their review and appear determined to keep to that. But not all issues are expected to be resolved by that date, and the conditional approval will not be a basis for placing orders, much less commencing construction. The extent of the remaining issues and how long it will take to resolve them is far from clear, especially given the additional safety reviews requested post- Fukushima.
  • 英国:
  • 2007年に包括審査が英国で行われた。4基の設計が提出され、GE ESBWRとカナダ製重水炉は早くも撤退し、残るはAP1000とEPRのみとなった。英国原子力規制当局は2011.7までに審査を完了する予定であった。しかし全ての課題がその日まで解決はぜす、条件付承認は発注の基礎とはならず、まして建設開始には至らない。福島事故以来の追加の安全策を考慮すると、残りの課題とそれがどの位時間がかかるのかも不明である。
  • The Fukushima Accident
  • During the past 30 years, three major events have caused major rethinks to nuclear plant design: Three Mile Island (March 1979), Chernobyl (April 1986), and 9/11 (September 2001). It took more than a decade for new designs to respond to the first two events, and the consequences of 9/11 are still being
  • incorporated. The March 2011 Fukushima accident will likely have a comparable impact on plant design. It is hard to see how a regulatory body could give generic approval to any new design until the problems at Fukushima have been thoroughly understood and designers find ways to prevent a repeat of events. As a result, completion of the U.S. and U.K. generic reviews will be delayed. The extent of additional design requirements remains to be seen, but it is very likely that additional costs, perhaps significant, will be imposed on any new designs.

  • 福島事故:
  • 過去30年間に、3つの事象が原発の設計を再考させてきた。スリーマイル島 (1979.3)、チェルノブイリ (1986.4)そして9.11事件 (2001.9)である。最初の2つの事故に対応するための新たな設計に十年を要した。9.11への対応はまだ検討中である。
  • 2011.3.11の福島事故もおそらく原子炉の設計に影響を与える。規制当局が新たな炉の設計を包括的に承認については、福島事故が完全に解明され、再発防止策が見つかるまでは見通しが立たない。結果的には米英の包括的審査は遅れることになる。追加の設計要求の範囲は今の所不明だが、新たな設計には相当な追加費用がかかることは確かである。
  • Impact on Costs
  • In 2008 and 2009, tenders for nuclear power plants in Canada and South Africa were abandoned because the bids received (for AP1000 and EPR) were roughly double the expected level. The two reactor designs were also turned down in the UAE in 2009 in favor of a lower Korean bid for the APR1400. This led to a lot of soul-searching by the nuclear industry and appears to have exploded the myth that Gen III+ designs could be safer but simpler and cheaper. In 2010, AREVA CEO Anne Lauvergeon admitted that the cost of nuclear reactors has "always" gone up with each generation because the safety requirements are ever higher, stating that, "safety has a cost." 2
  • One issue that arose after 9/11 was the need to ensure that a nuclear plant would survive a strike by a large civil airliner. European regulators also now require plant designs to include a "core catcher" that would catch the molten fuel (corium) if it breached the reactor's pressure vessel in the event of a failure of the emergency cooling system. When AREVA failed to win the UAE tender, Lauvergeon claimed that the reason that the proposed EPR was 15 % more expensive than a Gen II PWR was because of costlier safety enhancements—such as the core catcher and the reinforced containment— that were designed to prevent offsite radiological impact. Buying the Korean APR1400, she said, was like buying 'a car without air bags and safety belts.”
  • In light of these developments, some companies are revisiting earlier design generations, and EDF and AREVA (independently) have considered teaming up with China to offer the 1,000 MW PWR design that comprises most orders in China. This PWR is based on a design supplied to China by Framatome (predecessor of AREVA NP) in the 1980s, which itself was licensed from Westinghouse in the 1970s. Senior politicians in South Africa have discussed with Chinese and Korean politicians the possibility of importing the Chinese PWR or the Korean APR1400, respectively.
  • コストへの波及:
  • 2008-09年に、原発の入札がカナダと南アで行われAP1000とEPRは予算価格の2倍ということで敗退した。2009年のUAE向け2基の原発も、韓国のAPR1400に価格で負けた。これは原子力産業にとって大いなる反省材料であり、Gen III+の設計はより安全、簡便、かつ安価という電設が崩壊したように映った。AREBAのCEOのAnne Lauvergeonによれば、原子炉の世代交代毎に常に価格は上昇してきた。それは安全への要求が今まで以上に高くなり、安全性対策がコストを押し上げている。
  • 9.11以後の課題としては原子炉は大型民間航空機の衝突によっても生き残る安全性を必要とした。欧州の規制当局は、もし緊急冷却システムが破壊し、圧力容器が、メルトダウンによって突き抜けた場合、溶融した燃料を掴まえる"コア・キャッチャー"の仕組みを炉の設計に入れるよう要求した。これはもし緊急冷却装置の失敗によって圧力容器から溶融燃料が漏れる場合の対応である。AREVAはUAEの入札を失注したが、これはGen II PWRに比べて、このコアキャッチャーなどの安全対策や外壁コンクリートの強化など放射能汚染を防ぐための対策費のために15%ほど高価になっていることによる。韓国製APR1400の購入はエアバックや安全ベルトなしの車を購入するようなものとAREVAのCEOは述べた。
  • 原子炉の進歩に伴い、一部の電力会社は、一設計会社、EDF、AREVAなどを訪問し、中国向の1,000MW PWRの設計を連携して行うとした。このPWRは中国向に1980年代にFramatome (AREVA NPの前身) が設計したもので、1970年代にWH社より許可を得ている。 南アは、中韓それぞれと、中国製PWRと韓国製APR1400 の輸入可能性につき協議した。
  • China has only ever exported one small reactor unit (to Pakistan), and it is unclear whether it has the capacity for further exports given that it has been ordering roughly six units a year for its own market. It also remains unclear whether Chinese-supplied plants would be much cheaper than their Western counterparts. Moreover, there are indications that the Korean bid for the UAE plant—Korea's first nuclear export order—is in fact not economic but simply reflects the country's effort to get a foothold in the world nuclear market, even at a loss.
  • The UAE project also raises serious safety issues. In 2010, AREVA's Lauvergeon told a French National Assembly Committee that "the outcome of the UAE bid poses fundamental questions about the nature of the world nuclear market and the level of safety requirements for reactors that will still be operating in 2050 or 2070." She raised the specter of "a nuclear [market] at two speeds": a high-tech, high-safety mode for developed countries and a lower-safety mode for emerging countries. "The most stringent safety standards are in the U.S. and Europe," Lauvergeon said. "In Europe we couldn't construct the Korean reactor. Are American and European safety standards going to become international standards, or not?" 4
  • The negotiating of nuclear orders at a political level is also troubling. The UAE order was placed before the country had a functioning safety regulator, meaning that politicians effectively have decided that the Korean design will be licensable. Meanwhile, if South Africa decides to buy a Chinese or Korean reactor, what will the South African regulatory body do if it is not comfortable with licensing reactors that fall well below the standards required in Europe? If the Fukushima accident does reveal significant inadequacies in earlier designs, however, the renewed interest in older designs may well prove short-lived.
  • 中国:
  • 中国は小型原子炉をパキスタン向に1基輸出したことがある。中国は国内向けに年6基発注してきたが、これをさらに輸出しているかは不明。中国製原発は西側の原発より大幅に安価であるかは不透明。韓国製原発初の輸出がUAE向けに決まったが、これは経済性というより、損しても世界の原発市場に足場を築いたという点がある。
  • UAE:
    UAEは安全性を特に重視している。2010年にAREVAのCEOのLauvergeonは仏の委員会で発言し、"UAEの入札結果は、世界の原発市場に基本的な疑問を提起し、安全性の要求が2050や2070年でも運用される"ことを示した。"原発市場は、先進国向けのハイテク、高安全性の原発と、新興国向けの低安全性の原発に二分されている"と仏の委員会で不安を表明した。"最も厳しい安全基準は米欧である。欧州では韓国の原子炉は建設できない。米欧の安全基準が今後世界の標準になるかどうか。"
  • 政治レベルで行われている原発発注交渉もトラブルの原因である。UAEの発注は安全審査の前に行われた。それは韓国の設計で許可可能と政治家が判断したからである。一方、南アは中国製あるいは韓国製の炉の購入を決めたが、もし南アの規制当局が、欧州の基準を満たさないとして炉の許可を与えなかったらどうなるのか。もし福島事故で初期の炉の設計に重要な欠陥があることが判明したらどうなるのか。
  • Implementation Costs of Nuclear Power Plants
  • For a company investing in new nuclear power, a leading concern is the ability to repay the costs associated with building the plant. AREVA NP, the largest nuclear builder in the world, estimates that plant construction alone accounts for about two-thirds of the cost of a kilowatt-hour of nuclear electricity. Operating costs are relatively small compared to construction but are not insignificant. Other costs, such as plant decommissioning and waste disposal, are huge but are incurred so far in the future that they have little weight in conventional project appraisals for new nuclear plants.
  • From a corporate point of view, the main cost elements associated with nuclear power are:
    • Fixed costs, which are primarily associated with construction of the plant and are determined by
      the construction cost, the construction time, and the cost of capital. The costs of decommissioning
      the plant and of radioactive waste disposal also can be considered fixed costs, although they
      increase somewhat the longer a plant operates. The more electricity a plant produces per year, the thinner the fixed costs can be spread, so good reliability is a key requirement in keeping the cost of nuclear electricity down.
    • Variable costs, which include the cost of fuel, the cost of maintenance, and the non-fuel operating
      costs. Although these vary somewhat according to plant output, they are not generally "avoidable" costs and are typically incurred even if the plant is not operating.
    • Accident insurance, should the owner of the plant choose to insure it against damage (large
      companies may opt to self-insure to save the insurance premium). International treaties, such as
      the Brussels and Vienna conventions, cap the cost of "third-party" damage caused by a plant
      accident to a specified sum, which varies by country but is generally around $1 billion.
  • > Continued:
    6. Nuclear Economics (2):
  • 原発のコスト計算:
  • 企業が新たな原発に投資する場合、主な関心事はその建設に関連するコストが支払えるかということである。世界最大の原発メーカーのAREVA NPの試算では、設備建設だけで2/3に費用がかかる。運転コストはやや小さいものの重要である。その他の費用、例えば廃炉、廃棄物処理費用は巨大だが、それらはずっと将来に発生するので、新炉の従来の案件評価としては重要ではない。
  • 企業の観点からは、原発に係る主要コストは以下である。
    • 固定費: 主として原発設備に関わる建設コスト、建設期間、および資本コストである。また廃炉および核廃棄物のコストも固定費であり、原発の稼働が長くなればその分増加する。年間の発電量が増えれば、固定費負担は薄くなるので、原発の信頼性が、原子力発言コストを下げることのキーとなる。
    • 変動費:
      燃料費、保守費用、燃料以外の運転費。これらの必要は原発の出力によって若干変わるが、総じて避けられないコストであり、例え原発が稼働していなくても費用は発生する。
    • 保険料:
      原発の所有者が損害を補填するために付保する。 (大企業は保険料節減のために付保しない傾向にある。)原発事故による第三者霜害の上限は国によって異なるが一般的には10億ドル程度。
  • > つづく:
Comment
  • Cost issue of the nuclear energy had been regarded as an advantage, but it could be no less one of Achilles' tendon.
  • 原子力エネルギーのコストは強みと思われてきたが、それはやはりアキレス腱かもしれない。

| Top | Home | Article | Bookshelf | Keyword | Author | Oxymoron |